"Eco-Labeling and the Gains from Agricultural and Food Trade: A Ricardian Approach"

Kari Heerman (ERS/USDA)
Ian Sheldon (Ohio State University)
Jihyun Eum (Ohio State University)

Seminar
University of Wyoming
April 21, 2017
Laramie, WY

Motivation

- Analysis of agricultural system should recognize extent of vertical product differentiation, e.g., environmental claims (Sexton, 2013)
- **Eco-labeling key to resolving information asymmetry associated with environmental** *credence* **goods**
- Rapid growth of eco-labeling relating to food and agricultural products since 1970s (Gruére, 2013)
- Trade often expected to generate negative externalities (Copeland and Taylor, 2004)
- However, if production generates environmental benefits, eco-labeling beneficial (Swinnen, 2015)

Outline

- Develop Ricardian-type model drawing on Eaton and Kortum (2002), and others including, inter alia, Waugh (2010), Fieler (2011), Levchenko and Zhang (2014)
- Class of model already applied to agricultural trade by Reimer and Li (2010), Reimer (2015), and Heerman *et al.* (2015)
- Use to derive comparative statics concerning impact of labeling of and trade in eco-friendly products
- Lay out "recipe" for calibrating model, and initial estimation of gravity equation

Modern Ricardian Approach

- Difficult to adapt Dornbusch, Fischer and Samuelson (1977) to multi-country setting
- Contribution of Eaton and Kortum (2002): focus on parameters of productivity distribution
- Given country will be more productive than others at producing range of goods in continuum – generates reason for trade
- Generates gravity-like structure between share of spending on imports and trade costs (Arkolakis, Costinot and Rodriguez-Clare, 2012)

I countries trade products *j*, produced along continuum, producers having access to *LC* and *EF*:

$$q_i^{LC}(j) = z_i(j)L_i$$

$$q_i^{EF}(j) = z_i(j)L_i^{\alpha}H_i^{1-\alpha}$$

 $z_i(j)$ distributed independently as Fréchet:

$$F_i(z) = \exp\{-T_i z^{-\theta}\}$$

Prices offered by exporter *i* in *n*:

$$p_{ni}^{LC}(j) = \frac{r_i \tau_{ni}}{z_i(j)} \qquad p_{ni}^{EF}(j) = \frac{\kappa r_i^{\alpha} w_i^{1-\alpha} \tau_{ni} \zeta_{ni}}{z_i(j)}$$

Consumers in *n* buy *LC* and *EF* products at lowest price on offer:

$$p_n^k(j) = \min_i \{p_{ni}^k(j)\}$$

Productivity distribution used to derive distributions of *EF* price offers by *i* in *n*, and prices of *EF* products offered in *n*:

$$G_{ni}^{EF}(p) = 1 - exp \left\{ -T_i \left(\kappa r_i^{\alpha} w_i^{1-\alpha} \tau_{ni} \zeta_{ni} \right)^{-\theta} p^{\theta} \right\}$$

$$G_n^{EF}(p) = 1 - exp \left\{ -\Phi_n^{EF} p^{\theta} \right\}$$

where:
$$\Phi_n^{EF} = \sum_{l=1}^I T_l (\kappa r_l^{\alpha} w_l^{1-\alpha} \tau_{nl} \zeta_{nl})^{-\theta}$$

Setting $lpha=\zeta_{ni}=1$: $G_{ni}^{LC}(p)=1-exp\{-T_i(r_i\tau_{ni})^{-\theta}p^{\theta}\}$

$$G_n^{LC}(p) = 1 - exp\{-\Phi_n^{LC}p^{\theta}\}$$

where: $\Phi_n^{LC} = \sum_{l=1}^I T_l (r_l \tau_{nl})^{-\theta}$

- Φ_n^k , k=EF,LC describe how average productivity, input costs, trade and labeling costs around world affect prices of each type of good in each import market
- Lower trade costs allow consumption with smaller environmental impact, even without reallocation of consumption to *EF* products

Using price distributions, probability *i* offers lowest prices of *EF* and *LC* products in *n*:

$$\pi_{ni}^{EF} = \frac{T_i \left(\kappa r_i^{\alpha} w_i^{1-\alpha} \tau_{ni} \zeta_{ni}\right)^{-\theta}}{\Phi_n^{EF}}$$

$$\pi_{ni}^{LC} = \frac{T_i (r_i \tau_{ni})^{-\theta}}{\Phi_n^{LC}}$$

With continuum, these are also fraction of products that consumers in *n* purchase from *i*:

$$\frac{X_{ni}^{k}}{X_{n}^{k}} = \frac{\pi_{ni}^{k} \int_{0}^{1} Q^{k}(j) dj \int_{0}^{\infty} p dG_{n}^{k}(p)}{\int_{0}^{1} Q^{k}(j) dj \int_{0}^{\infty} p dG_{n}^{k}(p)} \equiv \pi_{ni}^{k} \qquad (1)$$

Consumers have preferences over products, choosing *EF* and *LC* to maximize:

$$\frac{\sigma}{\sigma-1}\left(\int_0^1 q_i^{LC}(j)^{\frac{\sigma-1}{\sigma}}dj+\omega_i^{\frac{1}{\sigma}}\int_0^1 q_i^{EF}(j)^{\frac{\sigma-1}{\sigma}}dj\right)$$

Implies total expenditure on *EF* relative to *LC*:

$$\frac{X_i^{EF}}{X_i^{LC}} = \omega_i \left(\frac{P_i^{EF}}{P_i^{LC}}\right)^{1-\sigma}$$

 P_i^k is CES price index, $P_i^k = \gamma \Phi_n^{k^{-1/\theta}}$, k = LC, EF -consumers only choose EF if labeled

Comparative Statics: Labeling

- **Labeling increases** *EF* trade flows:
 - (i) Labeling increases share of *EF* expenditure on imports:

$$\pi_{nn}^{EF} = \frac{T_n (\kappa r_n^{\alpha} w_n^{1-\alpha})^{-\theta}}{\Phi_n^{EF}} = \frac{T_n (\kappa r_n^{\alpha} w_n^{1-\alpha})^{-\theta}}{\sum_{l=1}^{I} T_l (\kappa r_l^{\alpha} w_l^{1-\alpha} \tau_{nl} \zeta_{nl})^{-\theta}}$$

Without labeling $\zeta_{ni} = \infty$, consumers do not recognize imported *EF* as distinct from *LC* products, therefore:

$$\Phi_n^{EF} = T_n (\kappa r_n^{\alpha} w_n^{1-\alpha})^{-\theta}$$
 and $\pi_{nn}^{EF} = 1$

As labeling costs fall, Φ_n^{EF} increases and π_{nn}^{EF} falls, i.e., import share of expenditure on EF products rises

Comparative Statics: Labeling

(ii) Labeling increases share of total expenditure allocated to *EF* products:

By definition, $X_i = X_i^{EF} + X_i^{LC}$, therefore:

$$\frac{X_i^{EF}}{X_i} = \frac{\omega_i (p_i^{EF}/p_i^{LC})^{1-\sigma}}{1 + \omega_i (p_i^{EF}/p_i^{LC})^{1-\sigma}}$$

Recall $p_n^{EF} = \gamma \Phi_n^{EF^{-1/\theta}}$, so lower labeling costs implies lower prices for *EF* products

Therefore, since lower labeling costs have no impact on Φ_n^{LC} , introducing *EF* labels lowers (p_i^{EF}/p_i^{LC})

Comparative Statics: Land and EF

Optimal land allocation implies:

$$\frac{L_i^{EF}}{L_i^{LC}} = \frac{\sum_n \pi_{ni}^{EF} X_n^{EF}}{\sum_n \pi_{ni}^{LC} (X_n - X_n^{EF})}$$

Already established that π_{ni}^{EF} increases with ecollabeling, as does share of expenditure allocated to EF

 $X_n - X_n^{EF}$ is also decreasing in import markets where labeling of i's EF products is introduced

Therefore, share of land allocated to *EF* production increases for exporter *i*

Comparative Statics: Mutual recognition

Recognition of *i*'s labeling in *n* implies:

$$egin{aligned} oldsymbol{\pi}_{ni}^{EF} &= rac{T_i \left(\kappa r_i^lpha w_i^{1-lpha} au_{ni}
ight)^{- heta}}{\Phi_n^{EF}} \ \Phi_n^{EF} \ &= T_n \left(\kappa r_n^lpha w_n^{1-lpha}
ight)^{- heta} + T_i \left(\kappa r_i^lpha w_i^{1-lpha} au_{ni}
ight)^{- heta} \ &+ \sum_{l
eq i.n.} T_l \left(\kappa r_l^lpha w_l^{1-lpha} au_{nl} \zeta_{nl}
ight)^{- heta} \end{aligned}$$

 Φ_n^{EF} increases, and given:

$$rac{\mathbf{\Phi}_{n}^{EF}}{\mathbf{\Phi}_{n}^{LC}} = \left(rac{oldsymbol{p}_{i}^{EF}}{oldsymbol{p}_{i}^{LC}}
ight)^{-oldsymbol{ heta}}$$

Relative price of *EF* products declines, *EF* trade flows increase for fixed level of expenditure

- Given T_i , τ_{ni} , ζ_{ni} , H_i and ω_i , equilibrium is r_i , w_i , π_{ni}^{LC} , π_{ni}^{EF} , X_i^{LC} , X_i^{EF} and L_i^{LC} , L_i^{EF} , such that input markets clear and trade is balanced
- Solve for LC-type equilibrium variables, obtaining land rental rate r_i , and then solve for equilibrium w_i , and EF-type equilibrium values
- Parameterization/calibration requires values for $T_i, \theta, \tau_{ni}, \zeta_{ni}, \sigma$, and ω_i
- Standard approach: log-linearize (1) and estimate gravity-like equation to get, T_i , and τ_{ni} , use values of θ and σ from literature, and solve for ζ_{ni} and ω_i

Table 1: Key Parameters					
α	Land's value-added share in organic production (1-average labor share of value-added)	0.65 (OECD, 2009)			
W_i	Solve out assuming H _i =1 for all countries	Calibrate			
$ec{r}_i$	Country's agricultural output/hectare of arable land	World Bank (2012)			
T_i	Mean parameter for productivity distribution	Estimate			
θ	Dispersion parameter for productivity distribution	2.83 (Reimer and Li, 2010)			
$ au_{ni}$	Bilateral trade costs	Estimate			
ζ_{ni}	Organic labeling costs in market n in excess of exporter i 's labeling costs	Calibrate			
σ	Elasticity of substitution	1.5 (Ruhl, 2008)			
ω_i	Consumer love of sustainability	Calibrate			

Normalize π_{ni}^{LC} by π_{nn}^{LC} :

$$\frac{\pi_{ni}^{LC}}{\pi_{nn}^{LC}} = \frac{X_{ni}^{LC}}{X_{nn}^{LC}} = \frac{T_i(r_i\tau_{ni})^{-\theta}}{T_n(r_n)^{-\theta}} = \frac{T_i}{T_n} \left(\frac{r_i}{r_n}\right)^{-\theta} \tau_{ni}^{-\theta}$$

and taking the log:

$$\ln\left(\frac{X_{ni}^{LC}}{X_{nn}^{LC}}\right) = \ln\frac{T_i}{T_n} - \theta \ln\frac{r_i}{r_n} - \theta \ln \tau_{ni}$$

Following Reimer and Li (2010), define:

$$S_i = ln(T_i) - \theta ln(r_i)$$

Substituting S_i in for T_i :

$$\ln\left(\frac{X_{ni}^{LC}}{X_{nn}^{LC}}\right) = -\theta \ln \tau_{ni} + S_i - S_n$$

Gravity-like structural relationship in *LC*:

$$\ln\left(\frac{X_{ni}^{LC}}{X_{nn}^{LC}}\right) = S_i - \theta\left(b_{ni} + l_{ni} + RTA_{ni} + \sum_{c} d_{c_{ni}} + ex_i\right) - S_n$$

where:

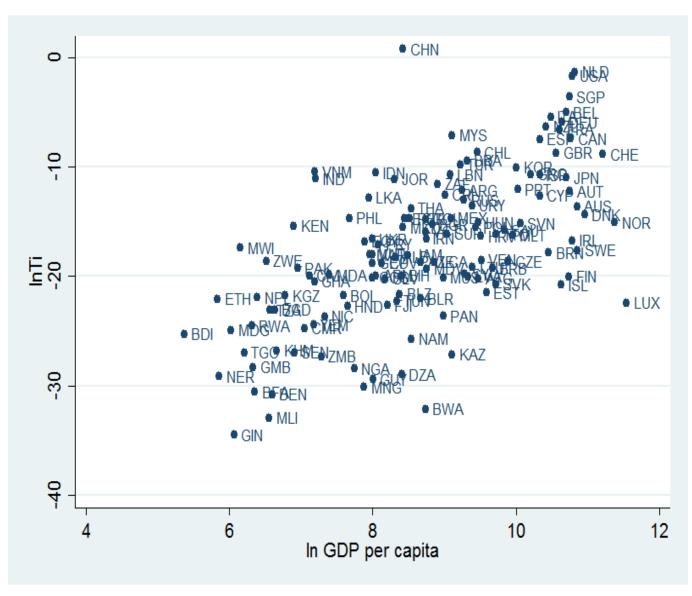
$$-\theta \ln(\tau_{ni}) = b_{ni} + l_{ni} + RTA_{ni} + \sum_{c} d_{c_{ni}} + ex_i + \xi_{ni}$$

Gravity Equation Estimates

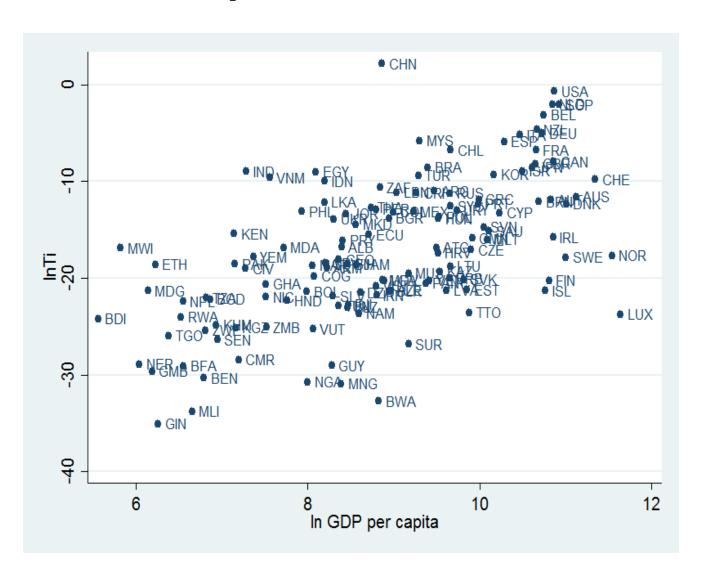
Variable	2010		2013	
D1 (0,375)	-12.71***	(0.50)	-12.92***	(0.45)
D2 (375,750)	-14.99***	(0.30)	-14.41***	(0.28)
D3 (750, 1500)	-17.92***	(0.20)	-17.34***	(0.20)
D4 (1500, 3000)	-19.75***	(0.14)	-19.28***	(0.15)
D5 (3000, 6000)	-20.92***	(0.08)	-20.82***	(0.09)
D6 (6000, max)	-21.30***	(0.17)	-21.33***	(0.12)
Border	1.30***	(0.45)	1.01***	(0.41)
Language	1.35***	(0.18)	1.30***	(0.19)
RTA	2.88***	(0.21)	3.35***	(0.21)
Adjusted R ²	0.51		0.53	
Sample-size	11,955		12,099	

^{***} Significant at 1 percent level

$\ln T_i$ (2010, θ =2.83)



$\ln T_i$ (2013, θ =2.83)



Next Steps

- Use parameterized model to evaluate impact of alternative eco-labelling policies:
 - Mutual recognition
 - Regulatory harmonization
- Allow for non-homothetic preferences to explore impact of income differences across *i* (Fieler, 2011), i.e., North vs. South and differing standards
- Introduce explicit environmental damage function
- Use pesticide standards to pin down weight ω_i on consumer preferences in utility function