WTO-Compatible Border Tax Adjustments to Mitigate Climate Change: One Price for Carbon?

Ian Sheldon (The Ohio State University)

Presentation prepared for Track Session, "One Price for Carbon? International Coordination of Climate Change Policies", AAEA Annual Meetings, Pittsburgh, PA, July 24-26, 2011

Climate Policy and Free-Riding

- Literature on climate agreement outlines conditions for self-enforcing coalition, e.g., Barrett (1994), Dutta and Radner (2007), Mason et al. (2010)
- However, incomplete participation in any international climate agreement likely to continue
- Without legal enforcement, incentive to free-ride on reduction in emissions by coalition – carbon leakage
- In presence of free-riding, what might efficient climate policy look like?

Efficient Climate Policy and Free-Riding

- Focus on interaction between carbon taxes and trade policy instruments, e.g., Hoel (1996)
- First-best: combination of uniform carbon tax, and import tariffs/export subsidies on energy-intensive traded goods
- Trade policy arguments could be made against use of import tariffs and export subsidies to offset carbon tax
- Ignores old discussion about destination vs. origin systems of taxation and use of border tax adjustments (BTAs) (Lockwood and Whalley, 2010)

Equivalence of Taxation Systems

- Destination principle of taxation requires BTAs, i.e., offsetting tax on imports and rebate of taxes on exports, while origin principle requires no BTAs
- Equivalence of taxation systems analyzed by: Johnson and Krauss (1970), Whalley (1979), Grossman (1980), and Lockwood et al. (1994), and Hufbauer (1996)
- No real effects if: uniform tax, flexible prices/exchange rates, and inelastic/immobile factor supplies
- Analysis has informed legal status of BTAs under GATT/WTO rules – GATT Articles II, III, VI and XVI

Equivalence of Taxation Systems

Origin vs. Destination Principles of Taxation

	Destination Principle (b=t)		Origin Principle (b=0)	
	Import	Export	Import	Export
Home consumer price	P ₁ *(1+t)	P ₂ *(1+t)	P ₁ *	P ₂ *
Home producer price	P ₁ *	P ₂ *	P ₁ */(1+t)	P ₂ */(1+t)

 P_i^* = foreign price; P_i^p = home net-of-tax producer price, and P_i^c = home consumer price; if domestic t is applied, and b=BTA, where b=0 under *origin* basis and b=t under *destination* basis:

- (i) Domestic consumer prices: $P_1^c = P_1^*(1+b)$; $P_2^c = P_2^*(1+t)/(1+t-b)$
- (ii) Domestic producer prices: $P_1^p = P_1^*(1+b)/(1+t)$; $P_2^p = P_2^*/(1+t-b)$

Carbon Taxes and BTAs – Efficient?

- Literatures on climate policy, and taxation imply combination of uniform carbon tax and BTAs on traded energy-intensive goods will be efficient
- Unlikely conditions for first-best will be met:
 - BTAs on imports targeted only at sub-set of industries
 - BTAs on exports not included in proposed legislation
 - basis for calculating BTAs may be non-neutral
- As a consequence, equivalence results from taxation literature may be violated (Lockwood and Whalley)

Conclusions

- In principle, taxation can be designed to address public bad in presence of free-riders with no real effects, but actual application unlikely to be neutral
- CGE modeling: both Dong and Whalley (2009) and Mattoo et al. (2009) find real effects
- Even if BTAs for domestic carbon taxes are WTOconsistent, strong potential for trade-distortion
- Reinforces need for inclusive, binding international climate agreement to create one price for carbon