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Abstract

In stark contrast to financial markets, relatively little attention has been
given to modeling agricultural commodity price volatility. In recent years,
numerous methodologies with various strengths have been proposed for
modeling price volatility in financial markets. We propose using a mix-
ture of normals with unique GARCH processes in each component for
modeling agricultural commodity prices. While a normal mixture model
is quite flexible and allows for time varying skewness and kurtosis, its
biggest strength is that each component can be viewed as a different mar-
ket regime and thus estimated parameters are more readily interpreted.
We apply the proposed model to ten different agricultural commodity
weekly cash prices. Both in-sample fit and out-of-sample forecasting tests
confirm that the two-state NM-GARCH approach performs better than
the traditional normal GARCH model. For each commodity, it is found
that an expected negative price change corresponds to a higher volatility
persistence, while an expected positive price change arises in conjunc-
tion with a greater responsiveness of volatility. A significant and state-
dependent inverse leverage effect is detected only for corn in a highly
volatile regime that occurs with a lower probability, indicating the volatil-
ity in this regime tends to increase more following a realized price rise
than a realized price drop.

Key Words : GARCH, volatility, value at risk, normal mixture.
JEL Classification: G17, Q14
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1 Introduction

Agricultural commodities are characterized by considerable price fluctuations that

arise from several factors including unfavorable weather conditions, natural disasters

(e.g. hurricanes), shifts in global demand and supply (due for example to agricultural

policy changes) and exchange rate volatility. Agricultural commodity price volatil-

ity has been exceptionally high during the last decade (FAO and UNCTAD (2011));

food price volatility reached almost a 30-year high in December 2010 (Bellemare

et al., 2013). Large and unpredictable price variations create a level of uncertainty

which increases risks for producers, traders, consumers and governments. The sub-

stantial increase in the level and volatility of agricultural commodity prices during

the 2006-2010 period renewed interest among policymakers, particularly in develop-

ing and emerging economies, as evidenced by government-managed price stabilization

programs and multilateral efforts (among the Economic Community of West African

States and the Association of Southeast Asian Nations) to institute strategic food

reserves (Romero-Aguilar, 2015). Empirical studies by Mason and Myers (2013) and

Bellemare et al. (2013) have not found such policies, especially price stabilization

efforts, to be effective in mitigating impacts of price volatility on lower income con-

sumers. Furthermore, many developing countries temporarily amended their trade

policies in response to the rising and volatile prices. Exporting countries turned to

export restrictions in the form of quotas, bans, and taxes (Bouët and Debucquet,

2012) while importing countries eliminated import tariffs (Demeke and Roux, 2014).

In developed countries, futures markets help food and agri-businesses mitigate

the adverse effects of price fluctuations. For example, large grain elevators purchase

grain from farmers on a forward contract basis and then hedge against the risk of

falling prices by selling futures contracts for the same quantity of grain. However,

managing price risk with futures contracts is more costly for producers and processors

when prices are exceptionally volatile. This is because futures contracts are margined
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daily, leading to significant losses when margin calls are triggered by unexpected

sharp price movements (Sam, 2009). For example, the dramatic surge in agricultural

commodity prices in 2008 led to large margin calls for grain elevators, threatening

their cash positions and causing some to increase their lines of credit substantially;

some small and mid-size elevators simply filed for bankruptcy (Sam, 2009; Getu and

Weersink, 2010).

In addition, volatile prices pose significant problems for market regulators and gov-

ernments as they need greater human resource skills to manage markets in a volatile

state. This is especially the case in underdeveloped countries where households may

suffer severe food scarcity and food security problems. Barrett and Bellemare (2011)

argue that welfare losses of price volatility are smaller for consumers than for pro-

ducers because of the substitutability of food products and the imperfect correlation

between their prices. That is, in the absence of a general increase in agricultural com-

modity prices, consumers can switch from a more expensive good to a relatively more

affordable one. As for producers, large price uncertainty raises risks to investment

and production decisions, particularly where the physical production cycle is long.

It can spur less investment in crop inputs because producers must make irreversible

investments decisions at the start of the growing season in a climate of highly un-

certain output prices (Barrett and Bellemare (2011)). Volatility-induced reductions

in crop investments lowers output, increases prices (Clapp (2009); Naylor and Falcon

(2010)), and reduces welfare for net food buyers.

The challenge that high commodity price volatility brings highlights the need to

better understand its causes, patterns, impacts and measures available to mitigate

them. Modelling commodity price volatility helps to forecast the absolute magnitude,

quantiles, and in fact, the entire distribution of price changes. Such forecasts are

widely used in risk management, derivative pricing and hedging, portfolio selection,

among other economic activities.
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It is well known that agricultural prices exhibit time varying variance. Gen-

eralized Autoregressive Conditional Heteroscedasticity (GARCH) models have been

extensively used for modeling U.S. agricultural prices. Aradhyula and Holt (1988)

show agricultural prices follow GARCH processes and that prices exhibit time-varying

volatility. Han et al (1990) find that quartely aggregate U.S. farm price index exhibits

conditional heterscedasticity. Using quarterly data, Saphores et al (2002) discover

ARCH effects in Pacific northwest stumpage prices. Muthusamy et all (2008) model

weekly wholesale fresh potato prices in Idaho using normally distributed GARCH

errors. However, all these studies assume that errors are normally distributed. Al-

though convenient and simple for estimation purposes, normal distributions do not

allow skewness and leptokurtosis let alone time-varying upper moments. As an ex-

tension, Bollerslev (1987) proposed modelling innovations via a GARCH model with

a Student’s t-distribution and Fernández and Steel (1998) extended it further consid-

ering the skewed t-distribution.

A few recent studies have proposed using a mixture of two normal distributions to

model volatility in equity markets. Among them, Haas et al. (2004) introduced the

general symmetric Normal Mixture(NM) GARCH model, and Alexander and Lazar

(2006) further investigated the property of NM-GARCH(1,1) model and provided em-

pirical evidence that the generalized two-component NM-GARCH(1,1) models per-

form better than both symmetric and skewed Student’s t-GARCH models for mod-

elling exchange rates. A clear advantage of the NM-GARCH model over Students’

t-GARCH models is the capability to model time-varying conditional skewness and

kurtosis. Another advantage of NM-GARCH model is that it accounts for multiple

states which enable economic interpretation. Haas et al. (2004), for example, pointed

out that an NM-GARCH model accommodates the possibility of distinct types of re-

sponses to heterogeneous market shocks. Alexander and Lazar (2009) argued that a

component with relative low variance could represent a “usual” state, which generally
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occurs, while a component with high variance could represent a “crash” state which

rarely occurs.

An important empirical regularity of equity markets is the fact that volatility

increases more after price declines than after price increases. Such an asymmetric

return-volatility relationship is documented as a financial leverage effect in early in-

fluential studies (Black, 1976; Christie, 1982; Engle and Ng, 1993; Glosten et al.,

1993). Engle and Ng (1993) introduced the Asymmetric GARCH (AGARCH) model

allowing unequal effects of negative and positive shocks.

In commodity markets, contrary to equity markets, an “inverse leverage effect”

may exist, i.e., a rise in the price level has stronger impact on the price volatility

than a drop in the price. This is understandable, as increased prices of commodities

generally bring panic and give rise to higher volatility. Previous studies, such as

Geman and Shih (2009) and Chang (2012) found such an effect in energy markets.

This effect has not been considered with respect to agricultural commodity markets.

In this manuscript we test whether NM-GARCH models are appropriate for mod-

elling and forecasting agricultural commodity price volatility. In order to capture

the possible state-specific asymmetric volatility responses to negative and positive

shocks, as seen in equity markets, we followed Alexander and Lazar (2009) and also

considered the NM-AGARCH model. For completeness we also consider the NM-

symmetric-GARCH and FIGARCH models. Out-of-sample interval forecast valida-

tion, though pivotal in risk management and policy-making, has been rarely applied

in past literature modelling volatility for agricultural commodity prices. In addition,

we perform Value-at-Risk (VaR) validation tests. To the best of our knowledge, NM-

GARCH models have not been used to consider volatility in agricultural commodity

markets.
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2 Literature Review

ARCH family, as a sophisticated group of time series volatility models, has been

extensively surveyed by Bollerslev et al. (1992); Bera and Higgins (1993); Poon and

Granger (2003). The seminal paper of Engle (1982) captured volatility clustering and

heavy tails that are two stylized facts in financial time series data. Bollerslev (1986)

introduced a generalized version of ARCH which reduces the number of parameters to

be estimated by imposing autoregressive terms. Since then, numerous extensions have

been made to GARCH models to capture asymmetry, long memory, structural breaks

and regime switching behaviours in financial market data. Haas et al. (2004), among

others, proposed extending the basic GARCH structure by assuming the conditional

distribution of the error term as a mixture of normal distributions. NM-GARCH,

though simple to estimate, is able to capture three regularities in financial asset

returns: volatility clustering, heavy tails, and time-varying skewness.

Time-varying volatility is also a stylized fact observed in agricultural commodity

price data. The empirical research on agricultural price volatility has focused on

the dependence of price volatility across related markets (Apergis and Rezitis, 2003;

Buguk et al., 2003; Rezitis and Stavropoulos, 2010; Serra et al., 2011; Serra and Gil,

2013; Serra, 2013) and determinants of price volatility (Shively, 1996; Hennessy and

Wahl, 1996; Karali and Power, 2013). For example, using a multivariate GARCH

model with exogenous variables incorporated in the conditional covariance model,

Serra and Gil (2013) found U.S. corn price volatility could be explained by volatility

clustering, the influence of biofuel prices, corn stocks and global economic conditions.

Karali and Power (2013) explained price volatility in the U.S. commodity futures

markets, using a spline-GARCH model of Engle and Rangel (2008) that produces

estimates of low-frequency volatility. Estimates are then regressed against a series

of macroeconomic variables. The study is based on 11 different daily futures prices

observed from April 1990 to November 2009. The U.S. Treasury interest rate spread
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(10-year to 2-year) is found to have negative impact on price volatility for corn, crude

oil, heating oil and hopper, with the largest effect for crude oil. Working’s theory of

storage, whereby volatility is decreasing in inventories, is supported for corn, wheat,

lean hogs, and crude oil.

The number of empirical tests of structural models in agricultural commodity

prices is surprisingly limited. Hall et al. (1989) detected unconditional leptokurtic

distribution in twenty daily futures price series and found support for the normal

mixture distribution hypothesis relative to a stable Paretian distribution hypothesis

by applying the stability-under-addition test. Yang and Brorsen (1992) were among

the first to empirically test for a GARCH structure in agricultural commodity prices.

They found that GARCH models with a conditional Student’s t-distribution fit daily

price change data better than a number of alternatives; however, both the Student’s t

distribution and the normal did not correctly specify the conditional distribution ac-

cording to the Kolmogorov-Smirnov test. Jin and Frechette (2004) found fractionally

integrated generalized autoregressive conditional heteroscedastic (FIGARCH) model

performs significantly better than the basic GARCH(1,1) models in modelling volatil-

ity of 14 agricultural futures price series, confirming long-term memory of volatility.

They explained many factors can lead to long-term dependence in agricultural futures

price volatility, such as supply lags, inventory holding, business cycles, agricultural

policies and heterogeneity among traders.

Previous research suggests the GARCH model with a conditional normal distribu-

tion or Student’s t-distribution does not adequately model the agricultural commodity

prices. Jin and Frechette (2004)’s finding support FIGARCH model over the basic

GARCH(1,1) models in modelling volatility with long-term memory. However, as

with other single-state models, FIGARCH model can not capture state-dependent

volatility dynamics and is subject to the stringent assumption of constant skewness

and kurtosis. Alternatively, the persistence in commodity price volatility can also be
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modelled by the GARCH part of the NM-GARCH model. In fact, the causes that lead

to persistent price volatility as listed by Jin and Frechette (2004) also contribute to

a multi-regime market and regime-dependent volatility dynamics. On the one hand,

supply lags and business cycles may lead to incidences of different market states, on

the other hand, agricultural policies, inventory holding and trade behaviours tend to

be different under stable and turbulent price environments. Therefore it is interesting

to access weather an NM-GARCH(1,1) model allowing for state-dependent volatility

dynamics can adequately capture the relevant properties of agricultural commodity

prices.

3 Model and Data

The innovation, denoted by the error term εt, is assumed to follow a mixture of k

Gaussian distributions with distinct component mean µi and component variance σ2
it.

That is,

εt|Ωt−1 ∼ NM(p1, . . . , pk, µ1, . . . , µk, σ
2
1t, . . . , σ

2
kt),

where Ωt is the information set at time t, pi ∈ (0, 1), i = 1, . . . , k are mixing weights,∑k
i=1 pi = 1 and

∑k
i=1 piµi = 0. We consider two possibilities for the conditional

variance of k components.

(i) NM(k)-GARCH(1,1):

σ2
it = ωi + αiε

2
t−1 + βiσ

2
it−1 for i = 1, . . . , k, (1)

where αi is defined as the volatility reaction parameter, indicating the effect

of market shocks on volatility, and βi is defined as the volatility persistence

parameter, referring to the extent of inertia in volatility. The NM(k)-symmetric-

GARCH(1,1) models assumes µ1 = ... = µk = 0.
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(ii) NM(k)-AGARCH(1,1):

σ2
it = ωi + αi (εt−1 − λi)2 + βiσ

2
it−1 for i = 1, . . . , k, (2)

where λi is the leverage parameter.

Both the NM-GARCH and NM-AGARCH models allow for different non-zero

component means, thus capturing overall unconditional or persistent asymmetry in

the state-dependent data. As the NM-AGARCH model includes a leverage parameter

λi, it is able to capture state-dependent dynamic asymmetry in the data. For example,

a negative λi indicates the conditional variance in this regime tends to be higher

following a price increase than a price decrease. In commodity markets, an “inverse

leverage effect” or a negative value of the leverage parameter is expected because a

rise in commodity prices generally brings panic and gives rise to higher volatility.

We analyze weekly cash prices of three grains, four meat and three dairy prod-

ucts obtained from the Livestock Marketing Information Center (LMIC). Because of

data availability, the time periods across commodities are different. Specifically, we

consider the following agricultural commodities (the data is illustrated in Figures 1,2,

and 3):

(i) grains: corn, sorghum and wheat weekly cash price series for the January 1988

to July 2013 period (1332 observations);

(ii) meat: beef weekly cash prices for the July 1999 to July 2013 period (758 ob-

servations), pork weekly cash prices for the January 1988 to April 2013 period

(795 observations), broiler and turkey weekly cash prices for the January 1992

to December 2012 period (991 observations).

(iii) dairy products: cheddar, butter and nonfat dry milk (NFDM) for the September

1998 to February 2013 period (753 observations).
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For each commodity, we fit the continuously compounded percentage changes of

prices, rt = 100(logPt−logPt−1) with an autoregressive-moving-average (ARMA(u,v))

model.

rt = c+ εt +
u∑

i=1

airt−i +
v∑

j=1

bjεt−j

An Akaike information criterion with a correction for finite sample sizes (AICc) is used

to select the appropriate values of u and v. Then we subtract the means of each series

and perform estimation of the NM-GARCH models by the expectation-maximization

(EM) algorithm of Dempster et al. (1977).

0
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Corn Sorghum

Wheat

Figure 1: Price levels of grains

4 Estimation Results and Implications

The GARCH(1,1), the NM(2)-GARCH(1,1), and the NM(2)-GJR-GARCH(1,1) mod-

els are estimated for each of the food price series. The estimation results are given in
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Figure 2: Price levels of meat

Tables 1–3.
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Figure 3: Price levels of dairy products
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Table 1: Estimation results for grains

p1 µ1 ω1 d α1 β1 λ1 µ2 ω2 α2 β2 λ2

Corn
GARCH 0.5526∗∗∗ 0.2007∗∗∗ 0.7828∗∗∗

(0.1660) (0.0275) (0.0258)
FIGARCH 0.5879∗∗∗ 0.7113∗∗∗ 0.2100∗∗ 0.6715∗∗∗

(0.2201) (0.1510) (0.0872) (0.0991)
NM-symmetric 0.3351∗∗∗ 0.7173∗∗∗ 0.5334 0.7381∗∗∗ 1.0155∗∗∗ 0.0783∗∗ 0.7067∗∗∗

(0.0520) (0.8341) (0.1619) (0.0601) (0.3224) (0.0304) (0.0569)
NM-GARCH 0.3423∗∗∗ -0.4118∗ 1.5749∗∗∗ 0.4443∗∗∗ 0.7297∗∗∗ 0.2143 0.5439 0.0419∗∗∗ 0.8452∗∗∗

(0.0495) (0.2371) (0.5962) (0.1025) (0.0379) (0.3630) (0.0152) (0.0669)
NM-AGARCH 0.3326∗∗∗ -0.3904∗∗∗ 0.7551 0.6122∗∗∗ 0.7004∗∗∗ -0.3025 0.1946 0.7407∗∗∗ 0.1144∗∗∗ 0.4679∗∗∗ 0.5038

(0.0127) (0.1332) (0.5811) (0.1311) (0.0554) (0.2866) (3.2570) (0.0295) (0.1213) (0.4273)
Sorghum

GARCH 0.3687∗∗∗ 0.1451∗∗∗ 0.8485∗∗∗

(0.1174) (0.0187) (0.0170)
FIGARCH 0.5958∗∗ 0.5393∗∗∗ 0.3930∗∗ 0.7228∗∗∗

(0.2329) (0.1162) (0.0813) (0.0665)
NM-symmetric 0.3469 0.7839∗∗ 0.2961∗∗ 0.8441∗∗∗ 0.4373∗ 0.1013∗∗∗ 0.7193∗∗∗

(0.2172) (0.3229) (0.1429) (0.0203) (0.2658) (0.0217) (0.1192)
NM-GARCH 0.3532∗∗∗ -0.0203 1.7840 0.3447∗∗∗ 0.7709∗∗∗ 0.0111 0.4381 0.1049∗∗∗ 0.7178∗∗∗

(0.1073) (0.1796) (1.1431) (0.0492) (0.0559) (0.2844) (0.0262) (0.1177)
NM-AGARCH 0.2999∗∗∗ -0.0790 16.1896∗ 0.4180∗∗∗ 0.3173 -0.1805 0.0338 0.2582∗∗∗ 0.122∗∗∗ 0.7507∗∗∗ -0.3571

(0.0126) (0.1429) (9.1500) (0.1125) (0.2870) (0.7879) (0.0828) (0.0190) (0.0324) (0.2741)
Wheat

GARCH 1.1638∗∗∗ 0.142∗∗∗ 0.7769∗∗∗

(0.3417) (0.0290) (0.0457)
FIGARCH 2.7298∗∗ 0.2788∗∗∗ 0.1280 0.2740

(1.1617) (0.0582) (0.2224) (0.2421)
NM-symmetric 0.1475 9.2233 0.9062 0.4402∗ 0.3549 0.0531∗∗∗ 0.8838∗∗∗

Continued on next page
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Table 1 – continued from previous page
p1 µ1 ω1 d α1 β1 λ1 µ2 ω2 α2 β2 λ2

(0.1104) (7.9163) (0.7815) (0.2598) (0.3331) (0.0143) (0.0665)
NM-GARCH 0.1243∗∗∗ 0.3398 8.2884∗ 0.6062∗∗ 0.5323∗∗ -0.0483 0.3618 0.0743 0.8601∗∗∗

(0.0481) (0.5603) (4.5265) (0.3018) (0.2241) (0.4982) (0.0460) (0.1170)
NM-AGARCH 0.1392∗∗∗ 0.3360 6.7075 0.5394∗∗∗ 0.3158

-
3.5595∗∗∗ -0.0543 0.2061∗∗ 0.1056∗∗∗ 0.8509∗∗∗ 0.0489

(0.0095) (0.2889) (5.0571) (0.1960) (0.2382) (1.0562) (0.1046) (0.0287) (0.0376) (0.4766)
Note: * p < 0.10, ** p < 0.05, *** p < 0.01.
Numbers in parentheses represent standard errors
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Table 2: Estimation results for meat

p1 µ1 ω1 d α1 β1 λ1 µ2 ω2 α2 β2 λ2

Beef
GARCH 0.3252∗∗ 0.1220∗∗∗ 0.8216∗∗∗

(0.1417) (0.0389) (0.0547)
FIGARCH 0.2810 0.3636∗∗∗ 0.4349∗∗ 0.6588∗∗∗

(0.1449) (0.1072) (0.1147) (0.1062)
NM-symmetric 0.1783∗∗∗ 0.3033 0.3997∗∗∗ 0.8228∗∗∗ 0.9315∗∗ 0.1427∗∗ 0.5599∗∗∗

(0.0549) (0.5600) (0.1143) (0.0799) (0.4185) (0.0567) (0.1561)
NM-GARCH 0.1707∗∗∗ 1.0806∗∗ 0.3440 0.4878 0.7562∗∗∗ -0.2225 1.1974∗∗ 0.1626∗∗∗ 0.4772∗∗∗

(0.0183) (0.4687) (0.3834) (0.3125) (0.0778) (0.5685) (0.0615) (0.1772)
NM-AGARCH 0.1774∗∗∗ 0.9780∗∗∗ 0.0087 0.5200∗∗∗ 0.7632∗∗∗ -0.3584 -0.2109 1.4690∗∗∗ 0.1296∗∗∗ 0.4180∗∗∗ 0.4343

(0.0071) (0.1680) (0.0863) (0.0531) (0.0164) (0.2976) (0.0790) (0.0253) (0.0667) (0.2805)
Pork

GARCH 2.9963∗∗∗ 0.2837∗∗∗ 0.4637∗∗∗

(0.7565) (0.0578) (0.0930)
FIGARCH 1.9946∗ 0.2758∗∗∗ 0.0770 0.2212

(1.1435) (0.0821) (0.2737) (0.3066)
NM-symmetric 0.4508∗∗ 4.2483∗∗∗ 0.4014∗∗ 0.4927∗∗∗ 2.3825∗ 0.1621∗ 0.3671∗∗∗

(0.1828) (1.4871) (0.1665) (0.1463) (1.3608) (0.0840) (0.1162)
NM-GARCH 0.4512∗∗ 0.3328 3.7113∗∗ 0.4357∗∗ 0.5108∗∗∗ -0.2736 2.5405∗ 0.1558∗ 0.3229∗∗∗

(0.2033) (0.2539) (1.4452) (0.1914) (0.1376) (1.3670) (0.0870) (0.0614)
NM-AGARCH 0.4499∗∗∗ 0.3509∗∗∗ 3.7773∗∗∗ 0.4158∗∗∗ 0.5119∗∗∗ -0.0095 -0.2870 3.2091∗∗∗ 0.1652∗∗∗ 0.2025

-
0.7073∗

(0.0177) (0.1192) (1.4381) (0.1550) (0.0235) (0.2652) (1.0481) (0.0273) (0.2229) (0.3905)
Broiler

GARCH 1.9922∗∗ 0.2984∗∗∗ 0.2071∗∗∗

(0.2905) (0.0569) (0.0870)
FIGARCH 2.0547∗∗∗ 0.0301 0.3003 0.1437

(0.4688) (0.0391) (0.1839) (0.1682)
NM-symmetric 0.4202∗∗∗ 0.2266 0.0257 0.5335∗ 3.2236∗∗∗ 0.4524∗∗∗ 0.2054∗

Continued on next page
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Table 2 – continued from previous page
p1 µ1 ω1 d α1 β1 λ1 µ2 ω2 α2 β2 λ2

(0.0452) (0.2270) (0.0163) (0.2750) (0.6722) (0.1233) (0.1202)
NM-GARCH 0.4041∗∗∗ 0.0183 0.1444 0.0507∗ 0.5327∗ -0.0124 3.1058∗∗∗ 0.4272∗∗∗ 0.2242∗

(0.0475) (0.0577) (0.1498) (0.0270) (0.2718) (0.6674) (0.1195) (0.1257)
NM-AGARCH 0.3988∗∗∗ 0.0237 0.1551∗∗∗ 0.0543∗∗∗ 0.4925∗∗∗ 0.2367 -0.0157 2.9604∗∗∗ 0.4143∗∗∗ 0.1223∗ -1.4252

(0.0148) (0.0344) (0.0538) (0.0134) (0.1079) (0.2190) (0.6278) (0.1039) (1.9485) (0.1541)
Turkey

GARCH 1.5422∗∗∗ 0.3287∗∗∗ 0.5258∗∗∗

(0.3017) (0.0544) (0.0596)
FIGARCH 1.0697∗∗ 1∗∗∗ 0 0.5389∗∗

(0.4822) (0.2502) (0.1198) (0.2262)
NM-symmetric 0.366∗∗∗ 3.2948∗∗ 0.5973∗∗∗ 0.5744∗∗∗ 1.0719∗ 0.1157∗∗∗ 0.1480

(0.0840) (1.3679) (0.2001) (0.1096) (0.5655) (0.0321) (0.1957)
NM-GARCH 0.3595 -0.7788 4.0189∗ 0.3486 0.6152∗∗ 0.4371 0.8666 0.0821 0.2572

(0.3491) (1.5344) (2.0595) (0.3161) (0.3118) (1.4003) (0.0506) (0.4985)
NM-AGARCH 0.3658∗∗∗ -0.7251∗∗∗ 4.3806∗∗∗ 0.5899∗∗∗ 0.4299∗∗∗ 1.8643∗∗∗ 0.4182 0.8095∗∗∗ 0.1240∗∗∗ 0.1269∗∗∗ 1.3961∗∗∗

(0.0148) (0.0863) (1.2738) (0.1939) (0.1022) (0.4907) (0.1202) (0.0221) (0.0722) (0.2712)
Note: * p < 0.10, ** p < 0.05, *** p < 0.01.
Numbers in parentheses represent standard errors
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Table 3: Estimation results for dairy products

p1 µ1 ω1 d α1 β1 λ1 µ2 ω2 α2 β2 λ2

Cheddar
GARCH 1.4877∗∗∗ 0.8093∗∗∗ 0.2778

(0.3903) (0.0966) (0.0895)
FIGARCH 0.563∗∗∗ 0.6918∗∗∗ 0 0.2997

(0.2001) (0.2362) (0.1861) (0.2770)
NM-symmetric 0.4331∗∗∗ 1.8884∗∗ 0.9985∗∗∗ 0.266∗∗∗ 1.0263∗∗∗ 0.4914∗∗∗ 0.0319

(0.0906) (0.7560) (0.2024) (0.1019) (0.3298) (0.1069) (0.0502)
NM-GARCH 0.4375∗∗∗ -0.4591∗∗∗ 2.0721∗∗∗ 0.9989∗∗∗ 0.2416∗∗ 0.3571 0.9404∗∗ 0.4659∗∗∗ 0.0221

(0.0618) (0.0899) (0.7658) (0.2024) (0.0980) (0.4447) (0.0965) (0.0458)
NM-AGARCH 0.3898∗∗∗ -1.0793∗∗∗ 0.3168 0.5963∗∗∗ 0.2685∗∗∗ -1.8796∗∗∗ 0.6895 0.4614∗∗∗ 0.9265∗∗∗ 0.0569∗∗ 0.7660∗∗∗

(0.0157) (0.0848) (0.1996) (0.0883) (0.0645) (0.1506) (0.0995) (0.0774) (0.0284) (0.0792)

Butter
GARCH 1.4275∗∗∗ 0.4227∗∗∗ 0.5066∗∗∗

(0.3614) (0.0837) (0.0746)
FIGARCH 0.667∗ 0.3395∗∗∗ 0.4675∗∗ 0.5908∗∗∗

(0.3778) (0.0940) (0.1498) (0.1714)
NM-symmetric 0.2202∗∗∗ 2.3676 0.9904∗∗∗ 0.6300∗∗∗ 1.9751∗∗∗ 0.2057∗∗∗ 0.1986

(0.0766) (1.7824) (0.3807) (0.0901) (0.5914) (0.0658) (0.1396)
NM-GARCH 0.2285∗∗ -0.5347 2.4461 0.9952∗∗ 0.6288∗∗∗ 0.1583 2.0692∗∗∗ 0.1825∗∗ 0.1896

(0.1082) (0.3473) (2.7269) (0.4083) (0.0905) (0.7016) (0.0723) (0.1583)
NM-AGARCH 0.2300∗∗∗ -0.3720 1.8600∗ 0.9510∗∗∗ 0.6580∗∗∗ 0.3910 0.1111 2.0600∗∗∗ 0.1680∗∗∗ 0.1920∗ -0.0001

(0.0154) (0.2270) (1.0100) (0.3200) (0.0730) (0.4610) (0.4100) (0.0401) (0.1130) (0.0296)
NFDM

GARCH 0.1692∗∗∗ 0.295∗∗∗ 0.7367∗∗∗

(0.0225) (0.0446) (0.0235)
FIGARCH 0.1786∗∗∗ 0.7536∗∗∗ 0.2665∗∗ 0.6935∗∗∗

(0.0390) (0.1687) (0.1158) (0.0811)
Continued on next page
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Table 3 – continued from previous page
p1 µ1 ω1 d α1 β1 λ1 µ2 ω2 α2 β2 λ2

NM-symmetric 0.0713∗∗∗ 2.8513 0.6241 0.7773∗∗∗ 0.0294∗∗∗ 0.3303∗∗∗ 0.5455∗∗∗

(0.0169) (3.1251) (0.4381) (0.1537) (0.0081) (0.0512) (0.0436)
NM-GARCH 0.0638∗∗∗ -0.9065∗∗ 1.4289 0.5004 0.8558∗∗∗ 0.0618 0.0313∗∗∗ 0.3107∗∗∗ 0.557∗∗∗

(0.0146) (0.3644) (0.8850) (0.3522) (0.0772) (0.0082) (0.0467) (0.0445)
NM-AGARCH 0.0653∗∗∗ -0.8862∗∗∗ 10.1659 0.6857 0.0071 4.4024 0.0619 0.0335∗∗∗ 0.3299∗∗∗ 0.5443∗∗∗ -0.0546

(0.0089) (0.3151) (20.43) (0.5264) (0.6265) (3.1788) (0.0077) (0.0457) (0.0394) (0.0478)
Note: * p < 0.10, ** p < 0.05, *** p < 0.01.
Numbers in parentheses represent standard errors

18



Estimation results are presented in Tables 1, 2 and 3, respectively for grains,

meat, and dairy products. For most commodities, the NM-GARCH model captures a

lower-volatility component that occurs with a high probability (the usual regime) and

a high-volatility component that occurs with a low probability (the unusual regime).

Among them, NFDM has the most unbalanced occurrence of the two market regimes,

with the unusual market regime occurring 10% of the time. For broiler and cheddar,

however, the two market regime occurred somewhat evenly over time, indicating a

two-regime model may be inappropriate for these. A noticeable result regarding the

NM-GARCH models is that similar to Haas et al. (2004), Alexander and Lazar (2006,

2009), and Bauwens et al. (2007), the component that has small mixing weights may

have unstable volatility dynamics in the sense that αi + βi > 1.

The usual mean component is lowest and negative in the beef (-.53% per week)

but the unconditional volatility is also low: at 1.4%, it is the lowest in the usual

regime. On the other hand, corn price has the most expected increase (.34% per

week) and the second highest volatility of the ten markets (around 4%, second to

Sorghum (4.5%)). In the usual regime the wheat series exhibits the least reactive and

most persistent volatility.

In the unusual market regime, NFDM has the highest unconditional volatility

(over 10%). Most series, wheat and NFDM in particular, are highly reactive to

market shocks in the unusual regime, yet because the persistence are all low, the

effect of a shock decays soon.

There is a clear-cut relationship between the component mean (µi) and the com-

ponent volatility dynamics (reflected by αi and βi). For each commodity, expected

negative price change corresponds to a greater volatility persistence parameter βi,

indicating volatility tends to be more persistent when shocks are negative.1 On the

other hand, expected positive price changes arise in conjunction with a higher volatil-
1A sole exception is pork, the component means and mixing weights of which are not significantly

different from 0.
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ity reaction parameter (αi), suggesting volatility is more reactive to price rises than

price drops. This is just the opposite of the case in the equity markets, where, for

example, Haas et al. (2004) found volatility is more stable when shocks are positive,

while more responsive to negative shocks. Note that the state-dependent volatility

dynamics are not detectable in previous research on agricultural commodity prices as

single-state GARCH models only capture an average of these effects if multiple states

exist.

The NM-AGARCH model is found to suffer the problem of over parameterization

for some commodities, on the grounds that it gives estimates that reach the boundary

values in numerical optimization. For the rest of commodities, it gives similar results

to the NM-GARCH model. The asymmetric parameters (λi) in the NM-AGARCH

for most commodities are insignificant except on occasions when component means

are negative. For example, corn has a significant inverse leverage effect in the unusual

regime where the price is expected to drop. Beef, on the other hand, has a significant

leverage effect during the usual regime where price falls are expected. A possible

explanation is that there are more beef producers who have long interest in their

products than physical hedgers, therefore in anticipation of falling prices a realized

price drop leads to panic and pushes implied volatility up. The fact that inverse

leverage effect is state-dependent (only significant in a regime where negative shock are

expected) also permits more refined risk management practice and market regulation

in agricultural markets than those based on single-state GARCH models.

4.1 Diagnostic Checks and Forecasting Performance

To assess the in-sample fit provided by the three models, we have applied several

model selection criteria. First, we test the normality of the standardized residuals.

As standardized residuals of GARCH-type models may not be identically distributed,

we proceed with a transformation pioneered by Berkowitz (2001) and extended to
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NM-GARCH model testing by Haas et al. (2004) and Alexander and Lazar (2009).

Specifically,

zt = Φ−1
(
F̂ (εt|Ωt−1)

)
, (3)

where Φ−1 is the inverse function of standard normal cumulative distribution function,

and F̂ (·) is the conditional distribution function of the error term εt. If the model cor-

rectly specifies the underlying data generating process (DGP), then the transformed

residuals zt’s should be identically independently distributed standard normal. As

noted by Berkowitz (2001), the transformed residuals would preserve inaccuracies in

the specified density, therefore Equation (3) can be used to check correct specification

of moment features such as skewness and kurtosis. Specifically, let T be the sample

size, g1 denotes the sample skewness of zt and g2 the sample kurtosis, if zt’s are nor-

mally distributed, then m1 = Tg21/6
asy∼ χ2(1) and m2 = T (g2 − 3)2/24

asy∼ χ2(1). In

addition, the following Jarque and Bera (1987) (JB) test is implemented to check the

normality of the transformed series zt.

JB = m1 +m2
asy∼ χ2 (2) .

Table 4 summarizes the results for the in-sample fit. Results show that the normal

GARCH model fails the skewness and/or kurtosis tests for all commodities except for

pork. The JB normality test results further show that transformed residuals of the

normal GARCH models for all price series except pork exhibit strong deviations from

normality. However even for pork, NM-type models have smaller JB-statistics indicat-

ing a better fit. The performance of the NM-GARCH model and the NM-AGARCH

models are comparable and consistently well for most commodities, indicating time-

varying conditional skewness and kurtosis specification exists and requires a model

that can accommodate such.
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Table 4: In-sample Fit Test

Skewness Kurtosis JB

Corn
GARCH -0.13∗ 0.95∗∗∗ 53.7∗∗∗
FIGARCH -0.13∗ 0.97∗∗∗ 56.1∗∗∗
MN-symmetric -0.1 -0.13 3.2
MN-GARCH -0.01 -0.1 0.5
MN-AGARCH -0.02 -0.09 0.5

Sorghum
GARCH -0.04 3.58∗∗∗ 709.9∗∗∗
FIGARCH -0.03 3.03∗∗∗ 509.7∗∗∗
MN-symmetric -0.01 0.46∗∗∗ 11.6∗∗∗
MN-GARCH -0.05 0.69∗∗∗ 27.1∗∗∗
MN-AGARCH -0.01 0.28∗∗ 4.5

Wheat
GARCH -0.02 2.97∗∗∗ 490.7∗∗∗
FIGARCH -0.01 3.35∗∗∗ 622.2∗∗∗
MN-symmetric 0.04 0.13 1.2
MN-GARCH 0.004 0.19 1.9
MN-AGARCH 0.05 0.09 0.9

Beef
GARCH 0.57∗∗∗ 1.06∗∗∗ 76.6∗∗∗
FIGARCH 0.7∗∗∗ 1.01∗∗∗ 93.8∗∗∗
MN-symmetric 0.32∗∗∗ -0.21 14∗∗∗
MNGARCH 0.17∗ -0.2 4.9∗
MN-AGARCH 0.18∗∗ -0.28 6.6∗∗∗

Pork
GARCH 0.07 0.44∗∗ 7.2∗∗∗
FIGARCH -0.08 0.25 2.9
MN-symmetric 0.07 -0.13 1.2
MN-GARCH -0.02 -0.13 0.6
MN-AGARCH -0.04 -0.11 0.6

Broiler
GARCH 0.11 1.54∗∗∗ 111.2∗∗∗
FIGARCH 0.05 1.34∗∗∗ 82.8∗∗∗
MN-symmetric 0.03 0.03 0.2
MN-GARCH 0.05 0.05 0.6
MN-AGARCH 0.02 0.03 0.1

Turkey
GARCH -0.75∗∗∗ 4.18∗∗∗ 813.7∗∗∗
FIGARCH -0.68∗∗∗ 4.62∗∗∗ 959.5∗∗∗
MN-symmetric -0.42∗∗∗ 0.47∗∗∗ 38.4∗∗∗
MN-GARCH -0.06 0.19 1.9
MN-AGARCH -0.05 0.14 1.1

Cheddar
GARCH -0.38∗∗∗ 0.84∗∗∗ 40.1∗∗∗
FIGARCH -0.33∗∗∗ 2.16∗∗∗ 160.3∗∗∗
MN-symmetric -0.29∗∗∗ -0.01 10.6∗∗∗
MN-GARCH -0.07 -0.08 0.8
MN-AGARCH -0.02 0.24 1.8

Butter
Continued on next page
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Table 4 – continued from previous page

Skewness Kurtosis JB

GARCH -0.07 2.46∗∗∗ 190.9∗∗∗
FIGARCH -0.06 2.38∗∗∗ 178.6∗∗∗
MN-symmetric -0.1 -0.05 1.3
MN-GARCH 0.32∗∗∗ 1.74∗∗∗ 108.4∗∗∗
MN-AGARCH 0.03 -0.07 0.3

NFDM
GARCH -1.02∗∗∗ 11.72∗∗∗ 4,438∗∗∗
FIGARCH -1.02∗∗∗ 11.47∗∗∗ 4,257∗∗∗
MN-symmetric -0.22 0.23 7.6∗∗
MN-GARCH -0.01 0.2 1.3
MN-AGARCH -0.04 0.19 1.3

* p < 0.10, ** p < 0.05, *** p < 0.01.

As volatility models are widely employed in risk management, we also assess the

accuracy of Value-at-Risk (VaR) predictions. VaR is defined as the conditional τ -

quantile, Pr (yt ≤ VaRt(τ)|Ωt−1) = τ , where τ is also defined as shortfall rate or

failure rate, representing the probability that the loss exceeds the VaR threshold. It

is widely used to measure the downside risk on a specific portfolio of financial assets.

Although many VaR backtesting criteria having been proposed, no consensus has

been reached about the best method. Thus we employ two VaR backtesting methods

in this manuscript.

For out-of-sample VaR, we follow Alexander and Lazar (2009) and use the condi-

tional coverage test introduced by Christoffersen (1998). The hypotheses are that the

realization of the variable lies outside the (1− τ)× 100% forecast interval τ × 100%

of the time, and such violations should also be independent across time. In the case

of VaR, the intervals are one-sided from the threshold value VaRt(τ) to infinity.

Define It {rt < VaRt|Ωt−1} , t = 1, . . . , T as the indicator sequence. A conditional

coverage test is a joint test of unconditional coverage test (E (It) = τ) and inde-

pendent test (Pr (It = 1|It−1 = 0) = Pr (It = 1|It−1 = 1)). Unexpected or prolonged

agricultural price spikes typically raise alerts to policy makers and upstream food

processors that rely on that commodity as inputs. For example, livestock enterprises
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are interested to know the highest levels feed prices could rise. Therefore, we also

assess the accuracy of the upper quantile prediction of the competitive models. The

upper tail risk also represents VaR for traders in a short selling position, see Giot and

Laurent (2003) for an applied example.2

Table 5 report the Christoffersen conditional coverage likelihood ratio test statis-

tics (LRCC). It is shown that the normal GARCH model fails all VaR(5%) tests

whereas the NM-GARCH model passes all the VaR tests and the NM-AGARCH

model only fails the test for beef, suggesting that the NM-GARCH and the NM-

AGARCH models are suitable for VaR calculation but the normal GARCH model

is not. Test results for implied 95% quantile forecasts also confirm the conclusion

that the normal GARCH model gives the worst fit. It only correctly predicts the

in-sample 95% quantile for beef but fails the interval tests for all other commodities.3

NM-GARCH and NM-AGARCH models only fail one upper-tail test respectively.

2Securities or other financial instruments not currently owned are short-sold by traders with the
intention of subsequently repurchasing them at a lower price. The short seller incurs a loss when
price rises to a higher prices than the proceeds of initial sale.

3A VaR(1%) test and 99% quantile test were also undertaken; they yield similar conclusions as
the normal GARCH forecast is overly cautious. For most commodities there is no violation in the
sample and thus the Christoffersen test statistics are not computable.
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Table 5: Out-of-sample VaR test results

VaR with 95% confidence VaR with 99% confidence

GARCH FI-
GARCH

NM-
symmetric

NM-
GARCH

NM-
AGARCHGARCH FI-

GARCH
NM-
GARCH

NM-
symmetric

NM-
AGARCH

LR test
Corn 388.95 29.72∗∗∗ 6.19∗∗ 1.59 1.59 621.28 108.03∗∗∗ 2.73 0.22 0.22
Sorghum Inf 29.2∗∗∗ 0.19 1.69 2.46 Inf 80.88∗∗∗ 0.83 0.83 4.05
Wheat 130.77∗∗∗ 40.9∗∗∗ 0.37 1.46 0.57 145.75∗∗∗ 69.13∗∗∗ 0.44 0.22 0.22
Beef 20.09∗∗∗ 32.2∗∗∗ 0.94 4.75∗ 1.11 3.61 31.55∗∗∗ 3.15 0.29 1.19
Pork 4.08 14.0∗∗∗ 2.06 0.01 0.03 15.27∗∗∗ 32.62∗∗∗ 1.67 0.23 1.67
Broiler 58.87∗∗∗ 17.7∗∗∗ 8.3∗∗ 10.91∗∗∗ 7.40∗∗ 92.17∗∗∗ 221.37∗∗∗ 0.15 0.15 0.24
Turkey 11.27∗ 8.50∗∗ 3.23 1.43 3.00 3.59 72.87∗∗∗ 2.24 0.66 0.66
Cheddar 69.14∗∗ 7.70∗∗ 27.29∗∗∗ 27.07∗∗∗ 23.32∗∗∗ 42.89∗∗∗ 150.86∗∗∗ 5.50 5.50∗ 5.50∗

Butter 20.34∗∗∗ 11.17∗∗∗ 4.57 7.18∗∗ 4.69∗ 44.42∗∗∗ 54.61∗∗∗ 11.95 4.29 6.52∗∗

NFDM 161.59∗∗∗ 0.01 17.87∗∗∗ 18.27∗∗∗ 18.11∗∗∗ 242.65∗∗∗ 72.35∗∗∗ 11.83 9.86∗∗∗ 8.14∗∗

GMM test
Corn 9,124∗∗∗ 24.27∗∗∗ 40.08∗∗∗ 10.86∗∗∗ 12.08∗∗∗ 96,900∗∗∗ 1,634∗∗∗ 2.25 0.03 6.75∗∗

Sorghum 13,652∗∗∗ 26.15∗∗∗ 4.29 8.63∗∗ 7.38∗∗ 204,513∗∗∗ 592.4∗∗∗ 2.16 4.99∗ 4.57
Wheat 1,321∗∗∗ 39.30∗∗∗ 0.96 0.29 0.62 4156∗∗∗ 196.3∗∗∗ 0.03 0.46 6.75∗∗

Beef 45.66∗∗∗ 27.64∗∗∗ 2.44 1.57 0.07 9.95∗∗∗ 170.0∗∗∗ 4.25 0.32 0.83
Pork 1.65 12.55∗∗∗ 0.7 0.21 0.04 41.19∗∗∗ 124.2∗∗∗ 0.42 1.09 4.54
Broiler 103.8∗∗∗ 129.9∗∗∗ 2.3 0.96 1.8 627.6∗∗∗ 14,748∗∗∗ 2.38 0.78 1.37
Turkey 7.50∗∗ 6.19∗∗ 0.4 1.41 0.36 1.70 539.2∗∗∗ 2.85 0.53 0.53
Cheddar 247.4∗∗∗ 8.38∗∗ 155.8∗∗∗ 51.32∗∗∗ 27.16∗∗∗ 1,099∗∗∗ 10,330∗∗∗ 0.56 9.95∗∗∗ 9.95∗∗∗

Butter 21.45∗∗∗ 6.08∗∗ 1.05 1.19 1.14 211.7∗∗∗ 324.2∗∗∗ 0.56 0.56 1.36
NFDM 3,926∗∗∗ 0.64 15.76∗∗∗ 50.08∗∗∗ 32.12∗∗∗ 49,495∗∗∗ 860.3∗∗∗ 31.61∗∗∗ 32.06∗∗∗ 20.05∗∗∗

Note: * p < 0.10, ** p < 0.05, *** p < 0.01.
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Next, we use a generalized method of moments (GMM) based approach proposed

by Dumitrescu et al. (2013) to test out-of-sample forecasting performance of the

models with respect to VaR(1%) (in accordance with Basel II requirement) as well

as 99% quantile prediction. The GMM based approach test Christoffersen’s three

validity hypotheses independently. It has better power and small-sample properties

and can always be computed even if there is no violation in the sample, whereas the

Christoffersen test requires at least one violation to compute the test statistic.

In this study, the out-of-sample forecasts of VaR’s are based on a rolling window

estimation procedure. Firstly, the necessary parameters of the three models are es-

timated based on the latest 7 years (364 weeks) observations. The parameters are

then fixed for one month (4 weeks) to facilitate out-of-sample interval forecasting.

The estimation sample is then rolled ahead in increments of 4 weeks. The estimation

and prediction procedure is repeated until the end of the observations. For example,

to forecast the innovation distribution of the first 4 weeks of 2013, we use the data

from 2006-2012 to estimate the parameters of interest, then in order to forecast the

innovation distribution of the fifth-eighth weeks of 2013, the estimation sample period

is moving forward 4 weeks, that is, from the fifth week of 2006 to the fourth week of

2013.

The results of the GMM conditional coverage test based on two moment conditions

and a block size N equal to 25 are shown in Table 5. As expected, the normal GARCH

method performs rather poorly in the VaR test at failure rate 1% as it fails 6/10 of

the tests. The NM-AGARCH model also fails a few tests but gives the most accurate

VaR forecast at failure rate 1% for wheat, broiler and butter. The NM-GARCH model

achieves the best results for downside risk forecasting. With respect to 99% quantile

forecasting, the normal GARCH model only passed the test for butter and nonfat dry

milk. The NM-AGARCH model gives the worst 99% quantile prediction for wheat,

cheddar and nonfat dry milk, possibly because the model is over-parameterized. The

27



NM-GARCH model achieves the best results for most commodities. In summary,

the single-state normal GARCH model performs rather poorly especially with re-

gards to the specification of skewness and kurtosis. The NM-AGARCH model that

incorporates different component means and the additional leverage effect is found to

fit better than the normal GARCH model but perform badly in out-of-sample fore-

casting, perhaps because of parameter proliferation. The NM-GARCH model with

different component means achieves the best fit by all criteria.

5 Conclusion

Previous modelling of commodity price volatility assumes a single-state GARCH pro-

cess and constant conditional skewness and kurtosis, and therefore is not able to

detect the state dependent volatility dynamics if multiple states exist. Commodity

price volatility may respond differently under different market states, for example,

under the expectation of positive and negative price changes. The NM-type GARCH

models allow for state-dependent volatility behavior and time-varying conditional

skewness and kurtosis. Haas et al. (2004) and Alexander and Lazar (2009), among

others, have applied those models in equity markets. This manuscript models agricul-

tural commodity price volatility using the NM-GARCH models with the assumption

of two market states.

Both in-sample and out-of-sample diagnostics are conducted to compare the fit

of the NM-GARCH and the NM-AGARCH models with a normal GARCH specifi-

cation. The overall conclusion is that the class of NM-GARCH models adequately

capture relevant properties of agricultural commodity price data but the single-state

normal GARCH model performs rather poorly especially regarding the specification

of skewness and kurtosis. Contrary to the case in equity market as found in Alexander

and Lazar (2009), the addition of dynamic asymmetry in the NM-AGARCH model

is sometimes found unnecessary for a few commodities, as it disturbs the time series
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fit and upper tail prediction.

Empirical results on ten agricultural commodity cash prices find a clear relation-

ship between expected price change and the volatility dynamics across regimes. For

each of the ten commodities, expected negative price change corresponds to a greater

volatility persistence, while expected positive price change arises in conjunction with

an increasing responsiveness of volatility. This is just the opposite of the case in the

equity markets, where Haas et al. (2004) found volatility is more persistent to positive

shocks and more responsive to negative shocks.

Finally, when possible state-dependent “inverse leverage effects” are explicitly ac-

counted for, as in the NM-AGARCH model, we found that for most commodities

these effects are insignificant except on occasions when component means are nega-

tive. A significant inverse leverage effect is detected only for corn in a less frequently

occurred regime where price falls are anticipated, which indicates the volatility in

this regime tends to increase more following a realized price rise than a realized price

drop. Conversely, beef is found to have significant leverage effects during the more

frequent regime where prices are expected to fall, indicating a realized price fall would

lead to higher volatility than a realized price recovery. By allowing state-dependent

inverse leverage effects and volatility dynamics, two-state NM-GARCH models would

facilitate more refined risk management practice than single-state GARCH models.
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