Vertical Product Differentiation and Credence Goods: Mandatory Labeling and Gains from International Integration

Ian Sheldon and Brian Roe (The Ohio State University)

"Quality Promotion through Eco-Labeling: Theoretical and Empirical Advances on the Feasibility of Developing Social and Environmental Claims"

2nd International Workshop at Laboratoire d'Economie Forestière Nancy, France, June 29-30, 2009

Motivation

- Goods increasingly differentiated by process attributes
- Consumers unable to verify claims about attributes, i.e., a form of credence good (Darby and Karni, 1973)
- Labeling possible, but there are implementation issues:
 - discrete vs. continuous labels
 - voluntary vs. mandatory
 - exclusive vs. non-exclusive
 - harmonized vs. mutual recognition
- Examine trade implications of choices in context of model of *vertical* product differentiation

Model

Consumers, firms and quality

Consumers have unit demand for quality-differentiated good, consumer utility is:

$$(1) U = u(y-p),$$

where $u \in [\underline{u}, \infty]$ and $\underline{u} > 0$ is minimum quality-standard

Income uniformly distributed on interval [a, b], and size of population is s

Firms produce single differentiated good with zero production costs and a fixed, quality-dependent cost, F(u), sunk by firm after entry:

$$F(u) = \varepsilon + \alpha (u - \underline{u})^2$$
, ε and $\alpha > 0$

Game structure

3-stage game: (1) entry/no-entry; (2) choice of quality; (3) price Invoke sub-game perfection and Bertrand-Nash competition

Labeling policy

Public certifiers perfectly monitor and communicate quality of individual firms *ex ante*, total cost of certifying and labeling being:

$$I^{j}(u) = I^{j}$$
 for $u > \underline{u}$, $j \in \{t, d\}$, and $I^{t} \geq I^{d}$

where t = continuous, and d = discrete labeling

No economies of scale in public certification, and no variable costs of labeling

Entry and number of firms

Assume:

(2)
$$4a > b > 2a \text{ or } b/4 < a < b/2.$$

ensuring *covered* market of 2 firms with quality levels $0 < \underline{u} \le u_1 < u_2$

Price equilibrium

y' is income at which consumer is indifferent to buying either high or low-quality good:

(3)
$$y' = (1-r)p_1 + rp_2,$$

where $r = u_2 / (u_2 - u_1)$, and p_q is price of good, q = 1,2, and if $p_1 = y$, consumer indifferent between good of quality u_1 and no good

Firms' profits are:

(4)
$$\pi_1 = sp_1(y' - a) - F(u_1)$$

(5)
$$\pi_2 = sp_2(b - y') - F(u_2)$$

Bertrand-Nash equilibrium prices being:

(6)
$$p_1 = \frac{b - 2a}{3(r - 1)}$$

$$(7) p_2 = \frac{2b-a}{3r}$$

(6) and (7) holding if
$$p_1 \le a$$
, so that $u_1 \ge \hat{u}_1(u_2) = \frac{u_2(b-2a)}{b+a}$

• In covered market, equilibrium prices increase in b and $(u_2 - u_1)$

Autarky Equilibrium with Perfect Information

Suppose quality is observable, firms' profit functions are:

(9)
$$\pi_1(u_1; u_2) = \frac{s(b-2a)^2(u_2-u_1)}{9u_1} - F(u_1) \text{ for } u_1 > \hat{u}_1(u_2)$$

(10)
$$\pi_2(u_1; u_2) = \frac{s(2b-a)^2(u_2-u_1)}{9u_2} - F(u_2) \text{ for } u_2 < \hat{u}_2(u_1)$$

where \hat{u}_1 is as defined, and $\hat{u}_2(u_1) = u_1(b+a)/(b-2a)$

• Low-quality firm chooses $u_1^* = \underline{u}$ in equilibrium

Follows from differentiating (9):

(11)
$$\frac{\partial \pi_1}{\partial u_1}(u_1; u_2) = -\frac{2s(b-2a)^2}{9} \frac{u_2}{(u_1)^2} - F'(u_1) < 0 \text{ for } u_1 > \hat{u}_1(u_2)$$

High-quality firm's optimal quality decision follows from (10):

(12)
$$\frac{\partial \pi_2}{\partial u_2}(u_1; u_2) = \frac{s(2b-a)^2}{9} \frac{u_1}{(u_2)^2} - F'(u_2) \text{ for } u_2 < \hat{u}_2(u_1)$$

where
$$\frac{\partial^2 \pi_2}{\partial (u_2)^2} = -\frac{2s}{9} \left[\frac{2b-a}{u_2} \right]^2 \frac{u_1}{u_2} - \frac{\partial^2 F(u_2)}{\partial (u_2)^2} < 0$$

Given $u_1 = \underline{u}$, firm 2's choice of quality induces a covered market:

$$\frac{\partial \pi_2}{\partial u_2}(u_2;\underline{u}) = 0 \text{ for } u_2 < \hat{u}_2(\underline{u})$$

Equilibrium quality in a covered market is implicitly defined by:

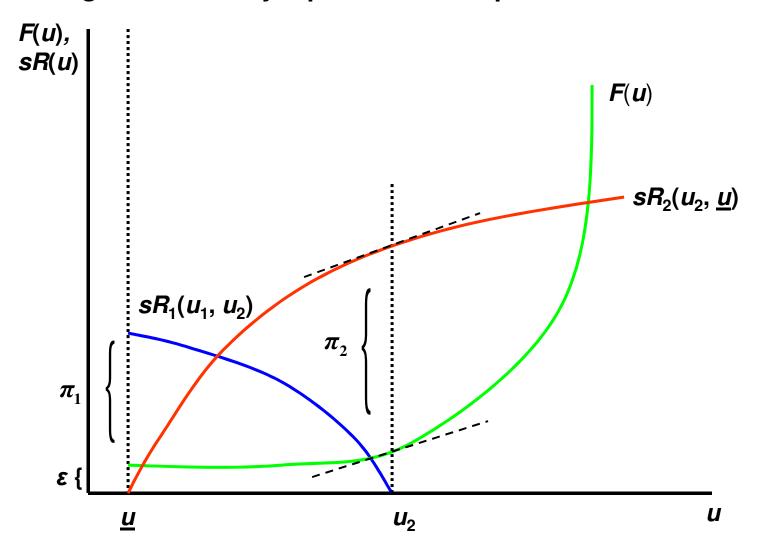
(13)
$$u_2^* = \left\{ u_2 \middle| \frac{s(2b-a)^2}{9} \frac{u_1}{(u_2)^2} - F'(u_2) = 0 \right\}$$

 u_1 *= \underline{u} and (13) represent the Nash equilibrium in qualities

With perfect information on u₂*, profits of both firms increase
 with b and s

This follows from inspection of (9) and (10)

Aggregate consumer welfare in equilibrium is:


(14)
$$W = \int_{a}^{y'} u_1^* (\psi - p_1^*) d\psi + \int_{y'}^{b} u_2^* (\psi - p_2^*) d\psi$$

- As u_2 increases, (i) welfare of consumers purchasing low-quality good decreases, (ii) proportion of consumers purchasing low-quality good declines, and (iii) aggregate consumer welfare increases
- (i) See utility function (1)

(ii) Differentiate (3) w.r.t
$$u_2$$
, $\frac{\partial y'}{\partial u_2} = -\frac{2u_1u_2(2b-a)}{3(u_2-u_1)^3} < 0$

(iii) In aggregate, consumers value quality over price increases

Figure 1: Autarky equilibrium with perfect information

North-North Integrated Equilibrium

- Perfect information (PI)
 - two economies, N=1,2, with same distribution of income integrate, $a_1=a_2$ and $b_1=b_2$, although may be of differing sizes, i.e., $s^i=s_1+s_2$
 - firms incur additional sunk costs ε^i to enter integrated market, but $\underline{u}_1 = \underline{u}_2$,
 - economy supports 2 firms, i.e., 2 firms have to exit, figure 2
 - increase in quality of good 2, quality of good 1 remaining the same
- Trade with no labeling (XL)
 - sunk cost of entry combined with 3-stage game supports entry of single firm into integrated market producing lowest quality
 - price is monopoly outcome given linear demand structure due to assumptions on income distribution

Figure 2: North-North trade equilibrium – PI case

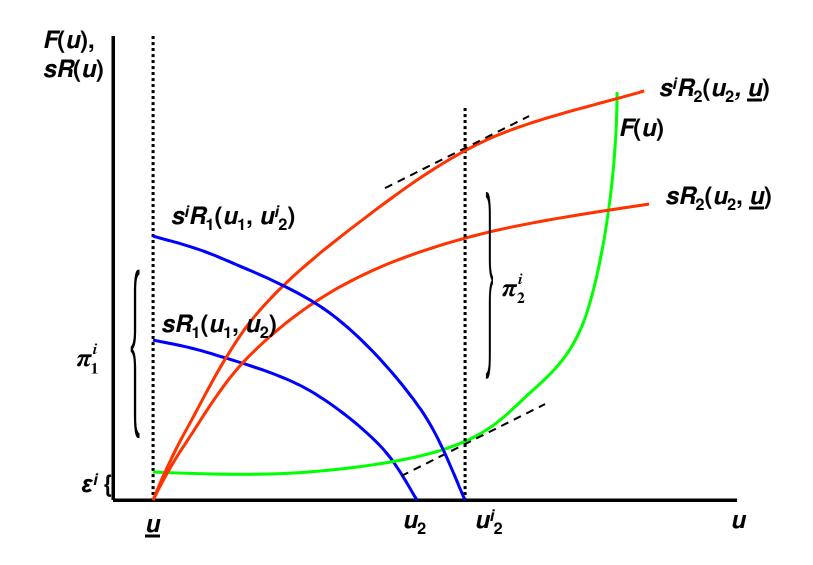
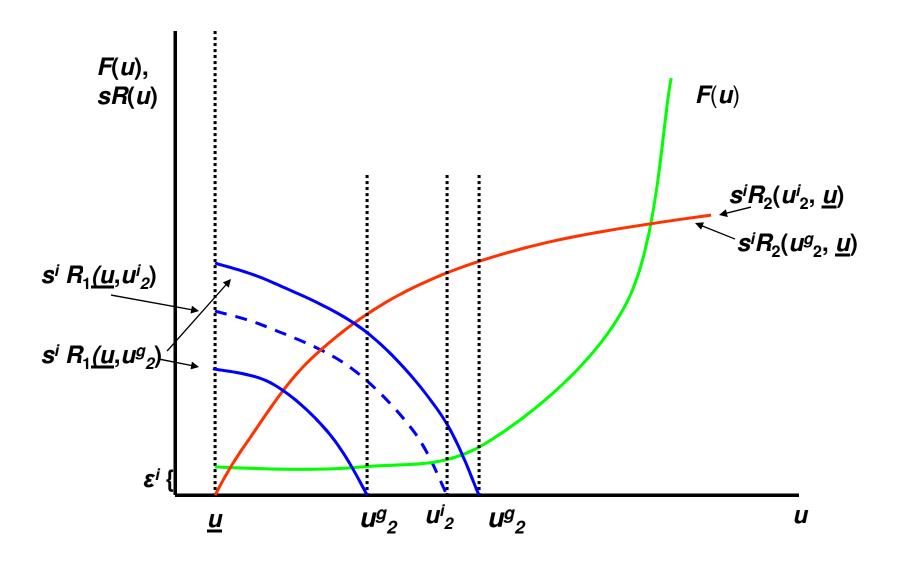


Table 1: Labeling regimes - North/North trade

	MEC	MED
Harmonized	Replicates PI	May be <i>XL</i> (Figure 3)
Mutual recognition	Replicates PI	May replicate PI


PI – perfect information

XL – no labeling

MEC – mandatory, non-exclusive, continuous

MED – mandatory, exclusive, discrete

Figure 3: Harmonized – *MED* case

North-South Integrated Equilibrium

- Trade equilibrium with overlapping income distributions
 - if two economies, N and S initially support two goods using same technology, but $a_N > a_S$, and $b_N > b_S$, and $\underline{u}_N > \underline{u}_S$, there will be three goods in integrated equilibrium if, $a_N/2 < a_S < a_N < b_N/2 < b_S < b_N$
 - gains from trade occur due to lower prices in equilibrium
 - XL generates monopoly outcome
 - MEC replicates PI
 - harmonized MED, one or two firms may be forced from market in equilibrium, but not necessarily with mutual recognition