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Abstract

USDA’s annual Agricultural Baseline Projections contribute significantly to agri-

cultural policy in the United States, and hence their accuracy is vital. The baseline

projections present a neutral policy scenario assuming a specific macroeconomic

situation and allow the analyses of alternative policies and their micro and macroe-

conomic impacts in the United States. We investigate the trends and heterogeneity

in the incidence of bias in the USDA International Baseline Projection reports from

2002 to 2022 to find a potential source of the bias. First, we use the dynamic time

warping algorithm to examine whether experts tend to group together the pro-

jections for certain crops across different countries, defined as herding, producing

similar projection trends and find strong evidence for herding of projection trends

toward the United States. Then, we compute the bias in projections, decompose it

by projection horizon, and estimate whether the bias is higher across crops or across

countries with more substantial evidence for grouping behavior. Results show that

for corn yield, soybeans exports, and imports, herding the projections toward the

United States lowers the bias while for almost all other crop variable combinations,

herding is associated with higher bias. This suggests that the projections for our

sample countries may irrationally be herded toward the United States, which is bias

inducing.

Keywords: agricultural baselines, USDA baselines, commodity projections, time

series similarity, forecast evaluation.

JEL Codes: C53, E17, Q11, Q13, Q14, Q18.



1 Introduction

From long-term agricultural policies that are incorporated into the law through quin-

quennial Farm Bills and the annual Presidential budgeting, USDA’s annual Agricultural

Baseline Projections have substantial implications for various stakeholders. The baseline

projections present a neutral policy scenario, which assume a specific macroeconomic situ-

ation and allow for the analyses of alternative policies and their micro and macroeconomic

impacts in the United States. They help evaluate local and foreign policy scenario changes

and their subsequent implications for United States’ farmers (Skorbiansky, Childs, and

Hansen, 2018; Langholtz et al., 2012). Therefore, any policy evaluations utilizing the

baselines projections will be as useful and informative as the projections are accurate.

Recently, academic research has started evaluating the accuracy of these projections, and

has made initial discoveries about the incidence of bias and limited informativeness of the

various USDA projections and forecasts (Bora, Katchova, and Kuethe, 2022, 2021; Regmi

et al., 2021; Isengildina-Massa et al., 2021; Kuethe, Hubbs, and Sanders, 2018). However,

from a policy perspective, understanding the source of bias is essential for minimizing it

and improving the projections, which has not received much attention in the literature.

Our study addresses this gap in the literature and investigates the level of herding

and its contribution towards bias in the USDA international baseline projections, where

herding is defined as significant similarity in two projected series. To answer this question,

we have a two-step empirical strategy. First, we examine whether experts tend to group

together the projections for certain crops across different countries, defined as herding

behavior, producing similar projection trends. Since projections are produced for a decade

in any given year, and may be correlated in both leads and lags, we employ time-series

techniques novel to our field to accommodate this time-varying correlation and quantify

herding. Utilizing rich time-series data where each time period nests an entire projection

series (nested time series), we use a Dynamic Time Warping (DTW) algorithm to assess

the degree of herding in the baselines projections. The DTW algorithm has been adapted

to various fields in recent applications (Berndt and Clifford, 1994; Müller, 2007; Jeong,

Jeong, and Omitaomu, 2011; Varatharajan et al., 2018) and is a robust way to measure

similarity in two time series.

Second, we compute the bias in projections, where bias is defined as the difference
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between projected values and realized values, and assess how the bias varies across crops

and across countries with differing level of herding behavior. Quite reasonably, some

similarities in projections may be stemming from the fact that the true realized data for

those regions follow a similar trajectory. In that case, herding in the projections may

occur from an informed choice, and it’s relation to bias should be evaluated with that in

mind. Since we only observe the final values and cannot observe any adjustments made

to the initially proposed projected values, we account for this phenomenon by defining

the rationality of the projections on an ex post facto basis. If herding the projections

of other countries towards the United States is associated with lower projection errors,

we classify this as a “rational” herding. Similarly, if herding the projections toward the

United States is associated with higher projection errors, it is irrational to align the

projection trends of other regions this way. This allows us to observe the heterogeneity

in the distribution of bias, determine the contribution of herding towards it, and improve

the accuracy of projections.

Herding is a behavioral phenomenon often observed in financial markets, when in-

vestors and experts with private information align their choices and decisions with others

as a risk management strategy. It can be rational if the individuals make the choice

to align their decisions with others based on superior private information, or it can be

irrational if individuals ignore their private information in order to adopt similarity with

others (Devenow and Welch, 1996). Behavioral finance research suggests that propensity

to herd is a response to a private cost minimization strategy by individuals. As long

as there is no significant cost to a single agent of agreeing with the group opinion, the

majority of people choose to follow the group consensus, regardless of their individual

prior beliefs (Huang et al., 2017). Moreover, when an institution (such as USDA) or a

specific forecasting team is considered a single entity, the forecast behavior of experts

within the institution and/or a team is affected by and aligned with the overall beliefs

of the institution/team, and hence their forecasts herd together (Benchimol et al., 2020;

Van Campenhout and Verhestraeten, 2010). Whether herding is rational or irrational,

it increases volatility in stock and commodity markets and is suboptimal for the market

(Blasco, Corredor, and Ferreruela, 2012; Wang and Wang, 2018).

Moreover, to understand how herding may occur in the baseline projections, we re-

capitulate the process of baseline projections preparation. Released each year by the
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USDA Interagency Agricultural Projections Committee, baseline projections combine

model-based values and judgment-based adjustments to these values (USDA Agricul-

tural Projections to 2030). Experts from various committees in USDA, including the

Economic Research Service, World Agricultural Outlook Board, and the Office of Chief

Economist, evaluate the region specific projected values and adjust them until a point of

consensus is reached among the committee. Therefore, the projections process involves a

first stage where region specific projections are prepared by individual teams, and a sec-

ond stage where all the regional projections are considered in unison for a global model,

and the region specific values may be adjusted. We, however, only observe the finalized

projection values after both stages are completed and cannot observe any adjustment.

Conceptually, for the baseline projections, similarity in projections can be introduced at

either of the two stages.

We find that the baseline projections for all countries are statistically significantly

aligned with the projections of the United States in their trends for all crops and vari-

ables. Moreover, for most crops and variables including corn, soybeans, and wheat total

consumption, this correlation is associated with significantly higher errors in projections.

In addition, corn yield, soybeans exports, and wheat imports are the only variables for

which herding the projections towards the United States is associated with more accurate

projections for the other countries. We also find that other globally leading producers of

certain crops can also provide useful for adjusting the projection trends of countries with

little or inaccurate information. Our findings have implications for the USDA baseline

experts as well as government agencies and users of the baselines reports.

We make three main contributions to the literature. First, our study identifies that

the projections for all countries included in the USDA International Baseline Projection

reports are correlated with the United States beyond the correlation in the realized values

for each country, which may inform USDA on another criterion that needs to be examined

prior to releasing their projection reports. Second, we provide conclusive evidence that

for other countries’ projections of most crop variables, correlation with the United States

is associated with higher bias and lower accuracy of these countries’ projections. This

informs the USDA baseline experts to assess the accuracy of the baseline models. If

the highly correlated projections were a result of the model values being correlated,

then the model input or models themselves may need to be updated. However, if the
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models resulted in dissimilar or uncorrelated projections that were later smoothed by

the baseline experts to look similar, this would suggest that the baseline committee

need to reconsider their herding behavior. Third, we recognize the heterogeneity in the

relationship between projections’ bias and projections’ correlation. By highlighting the

variables for which correlation reduces the error in projections, a higher accuracy in the

projections can be achieved if the projections are improved. Overall, these insights can

be incorporated by the team preparing the USDA baselines projections to minimize the

bias in the projections, and prepare more accurate projections allowing for better policy

discussion.

The remainder of this paper is organized as follows. Section 2 describes the USDA

International Baseline Projections and the variables included in our study. Section 3

details the empirical strategy, which is followed by presentation and discussion of the

results in section 4. Section 5 contains the concluding remarks.

2 Data

The baseline projections are one of various economic forecasts produced by several agen-

cies in the US. We use the official USDA International Baseline Projections data from

2002 to 2022 which include 10-year domestic (United States) and international (other

countries’) projections for several crops each year. We limit our analysis to three crops

— corn, soybeans, and wheat — and six variables — area harvested, yield, imports,

exports, ending stocks, and total consumption. Balance sheet equation dictating the

relationship between the variables we study is as follows

BeginningStocks+ Production+ Imports

= Exports+ TotalConsumption+ EndingStocks
(1)

where the BeginningStockst = EndingStockst−1, making it a redundant variable,

and Production = AreaHarvested × Y ield. We focus only on the variables that are

identified independently, thus, not considering beginning stocks and production.

The available baseline data also includes the realized values for up to three years

before the release date of the reports. We utilize these limited historical data in each

year’s report to construct an annualized panel data set for realized values that is used for

bias calculations and accuracy evaluations of the projections.
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The baseline projections have a structure which is statistically referred to as nested

time-series data, where each year nests the series of ten incremental horizon projections

for 10 years or horizons into the future. A representative projection Ŷrcvt is the pro-

jection series for country r (belonging to an unbalanced panel of 34 countries observed

annually over the study period), for crop c ∈ {corn, soybeans, wheat}, variable v ∈

{yield, area harvested, imports, exports, total consumption, ending stocks}, and report

year t ∈ {2002, ..., 2022}. Ŷrcvt is a series that has a length of H = 10, where h represents

the different projection horizons such that Ŷrcvt = (Ŷh0 , Ŷh1 , ..., Ŷh9).

The bias in the baseline projections is defined as the difference between the projection

and the realized value. We employ the logged error measure for assessing projections

accuracy, which can be interpreted in percentage terms:

LoggedErrorrcvth =
(
log(Ŷrcvth)− log(Yrcvth)

)
(2)

where Yrcvth is the actual value realized for the projection Ŷrcvth and LoggedErrorrcvth

is the error for each single projection made. LoggedErrorrcvh is the average error cal-

culated over the report years t in the projections for country r, crop c, variable v, and

horizon h.

3 Methods

There are two main components of our empirical analysis. First, we estimate the degree of

similarity and correlation among various countries’ baseline projections using the dynamic

time warping algorithm. We also compute the similarity in realized data over the study

period to provide a reference to understand whether the similarity in projections is coming

from the true realized data.

Second, we use regression analysis to study the relationship between the degree of

herding and the size of bias in the projections. To fully understand the heterogeneity in

this relationship, we estimate it separately for all crops and variables, and we also vary the

benchmark country. That allows us to observe whether the top producers of a commodity

are used as benchmarks in practice when these projections reports are produced. If this

is the case, then we should observe similarity in projections with the top producer of a

commodity.
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3.1 Evaluating the Degree of Similarity

We begin our analysis by evaluating the differences in projections of specific countries

for each crop, variable, report year, and projection horizon to estimate the degree of

similarity or herding in the projections. We use a dynamic time warping algorithm to

compute the distance between each set of projection series for each crop-variable-year-

horizon combination (for instance, corn yield projections for all 10 horizons in the future

that are included in the report year 2010) and evaluate whether the projections exhibit

similar trends among all countries. The algorithm finds the minimum distance needed to

make two time-series as similar as possible. We use the DTW algorithm to compute the

distances between all country pairs for each crop-variable-year-horizon to determine the

closest projection “neighbors” of the top country producers for each crop that have the

smallest distance among all countries.

We suppress the indices cvt since they remain the same for each pair of countries whose

projections are being compared. To determine the distance between the projections for

any two countries Ŷri and Ŷrj , we define the two time-dependent series Ŷri and Ŷrj and

compute an expansive local cost matrix (LCM) between them. The LCM is populated by

pairwise comparisons of each horizon’s projections for Ŷri with each horizon’s projections

of Ŷrj , resulting in a square matrix of dimensions 10×10 since length(Ŷri) = length(Ŷrj) =

10 for the 10 horizons. The LCM matrix is defined as:

LCM(Ŷri , Ŷrj) =


dŶrih0 ,Ŷrj h0

dŶrih0 ,Ŷrj h1
· · · dŶrih0 ,Ŷrj h9

dŶrih1 ,Ŷrj h0
dŶrih1 ,Ŷrj h1

· · · dŶrih1 ,Ŷrj h9
...

...
. . .

...

dŶrih9 ,Ŷrj h0
dŶrih9 ,Ŷrj h1

· · · dŶrih9 ,Ŷrj h9



where each matrix element dŶriha ,Ŷrj hb
=
√

(Ŷriha − Ŷrjhb)2 denotes the Euclidean

distance between ath and bth horizon projections of series Ŷri and, Ŷrj respectively and

a, b ∈ h.

We find the distance between the two projection series by defining φ(k) to be the

path from dŶrih0 ,Ŷrj h0
to dŶrih9 ,Ŷrj h9

where k = (1, 1), ..., (H,H). For a given path φ, we

compute the Euclidean distance measuring similarity between the projections for two

countries Ŷri and Ŷrj as
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dφ(Ŷri , Ŷrj) =
∑

k[(LCM(k))×mφ(k)]

where mφ(k) is the per-step weighting coefficient, allowing to only add the distance in

horizon-specific projections that falls on a given path φ(k). At this step, all the possible

paths from the beginning of LCM at k = (1, 1) to the end at k = (H,H) are computed.

Next, we find a path φ within the LCM matrix that gives the minimum total distance

between the projections in two countries dφ(Ŷri , Ŷrj). Hence, we use the DTW algorithm

to find the minimum distance between the two countries’ projections for the close-by

horizons by solving the following optimization problem:

DTW (Ŷri , Ŷrj) = minφ(dφ(Ŷri , Ŷrj)) (3)

We impose two constraints on the minimization problem to avoid meaningless loops

or inefficient paths. First, we require monotonicity, which restricts the direction of the

path taken within the LCM to only increasing projection horizon for at least one of the

projection series :

φ : φ (k + 1) ≥ φ(k) (4)

Second, we impose the Sakoe-Chiba window constraint to restrict the path that can

be taken to a window hwindow around the principal diagonal of the LCM . We use a

window hwindow as the only valid points of the LCM where a path φ can be made in the

range:

| (ha, hb − hwindow) , (ha, hb + hwindow) | (5)

for all horizons (ha, hb) along the principal LCM diagonal. This constraint allows

only reasonable lead and lag relationships of the horizons to be considered while two

projection series are being compared. We set hwindow = 2 restricting projection Ŷri for,

say, horizon 5 to only be compared to projection Ŷrj for another country from horizon 3 to

7 allowing the algorithm to detect at max a 2-year lead or a 2-year lag relationship between

the two projection series. This approach is more general than restricting comparisons

between countries’ projections to be only for the same horizon. To ensure comparability

across different countries’ projections, we scale the baseline projections data using z-score

normalization for each projection series being compared.
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The distance calculation detailed above is repeated for each crop c, variable v, report

year t, and the projection series of each country have the length of horizon h. To com-

pute the overall distance in projections of two countries, we average the DTW distances

between projections for two countries Ŷri and Ŷrj over all report years t:

distance(Ŷricv, Ŷrjcv) =
1

length(t)

2021∑
t=2002

(DTW (Ŷricvt, Ŷricvt)) (6)

where distance(Ŷricv, Ŷrjcv) gives average difference in projections of two countries for

each crop c and variable v andDTW (Ŷricvt, Ŷrjcvt) refers to distance from the minimization

problem described in equations (3), (4), and (5). We compute the standard errors for the

computed distance using the bootstrapping method with 250 replications.

If a country’s distance from a benchmark country is statistically indistinguishable

from zero, we would infer that its projections are correlated with those of the benchmark

country, in other words, the two countries are similar in trends. Repeating this process

for all crops and variable combinations and all benchmark countries provides enough

information to evaluate whether and where herding behavior of countries’ projections

occurs.

3.2 Relationship between Bias and Herding

We estimate the relationship between similarity in projection trends and the bias in

the baseline projections. This allows us to answer whether herding the projections for

various countries is desirable in the case of limited information. Moreover, we can evaluate

the heterogeneity in the impact of herding on bias across crops, variables, horizons, and

report years. Using different countries which are the top producers of these crops (United

States, Brazil, or China) as benchmark countries for herding in the projections, we begin

by estimating the following equation:

LoggedErrorrjh = β0 + β1log(distance(ŶrUS
, Ŷrj)) + εrjh (7)

for each crop and variable separately, using the logged error calculated in equation (2).

log(distance(ŶrUS
, Ŷrj)) is the log of computed DTW distance of country rj’s projections

from the United States for each projection horizon. This is the distance calculated in

equation (3) using the dynamic time warping algorithm.
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The coefficient on log(distance(ŶrUS
, Ŷrj)) shows the β1% change in the projection er-

ror associated with 1% increase in the distance of country r’s projections from the United

States. If this value is significant and positive, it implies that herding the projections

towards the United States is associated with lower errors, while a significant negative es-

timate suggests that herding towards the United States may be causing higher projection

errors. A significant positive β1 would signal that herding is irrational and not aiding

the accuracy of the projections for the other countries, on average. Similarly, a signifi-

cant negative β1 indicate rational herding of the other countries’ projections towards the

United States because herding towards the United States is seemingly reducing the error

in the projections of other countries.

We estimate two more versions of equation (7) with Brazil and China being the

benchmark countries. With income and imperfect information, trends of other global

leaders may also provide helpful insights for a given crop’s projections in other regions.

Therefore, we estimate

LoggedErrorrjh = β0 + β1log(distance(ŶrChina
, Ŷrj)) + εrjh (8)

and

LoggedErrorrjh = β0 + β1log(distance(ŶrBrazil
, Ŷrj)) + εrjh (9)

4 Results

We first present the results of the dynamic time warping algorithm that measures the

distance in projections of various countries compared to the projections of select bench-

mark countries i.e., United States, Brazil, and China. These three regions are chosen as

the benchmarks because they are among the leading global producers for the crops we

are focusing on: corn, soybeans, and wheat. The results are categorized by crop (corn,

soybeans, and wheat) and variable (yield, area harvested, ending stocks, total consump-

tion, imports, and exports). We also depict the errors in the projections for each country,

displaying them by projection horizon. So, the top panels of 1 through 18 correspond to

similarity estimates from equation 6 and the bottom panel is a visual representation of

error calculations as per equation 2. The similarity measures are estimates, so we also

depict the 95% confidence interval for all of them. Therefore, if the confidence intervals
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for estimated distance contains 0, we conclude that the projections for the country on the

horizontal axis are statistically significantly similar to the projections for the benchmark

country. We have estimated the similarity for all countries in our sample, but display

only twelve countries in the figures, since they are among the major producers of the

three crops included in our analysis. Figures 1 to 6 correspond to corn, figures 7 to 12

represent soybeans, and figures 13 to 18 contain the results for wheat.

Our results show strong correlation in the baseline projections trends of other countries

with the United States. For all the countries in our sample, all confidence intervals for

the distance from the United States contain 0 regardless of the magnitude of the point

estimate. That implies that projections for all crops and variables are significantly similar

to the United States (their distance from the United States is indistinguishable from 0).

On the other hand, there is reasonable variation in similarity of projections with the other

benchmark countries (Brazil and China). For instance, in figure 1, distance in projections

between Brazil and United States overlaps zero (projections are similar) while distance

between Brazil and China is significantly greater than zero (projections are not similar).

Ukraine and Indonesia are two other countries in figure 1 with significant similarity to

the United States while being significantly distant from Brazil.

The most notable result from these set of figures is that the USDA baseline projections

do not significantly differ from the United States compared to other sample countries for

any crop or variable considered in the analysis, while reasonable dissimilarity exists when

Brazil or China are set as the benchmark country. However, the distances in realized val-

ues of different countries from the United States are often greater in magnitude than the

estimated distance in projections. For select variables, the distance in realized values are

outside the 95% confidence interval of estimated distance in projections (i.e., distances are

irrational), the exception to this occurs for variables with very large confidence intervals

(see corn area harvested—figure 2, and corn total consumption—figure 3).

Moreover, projection error trends in the bottom panels of figures 1 through 18 show

the error in projections for the twelve countries depicted in the top panels. This is the

average error over the study period for each projection horizon, marked on the horizontal

axis. A larger projection horizon means that projections are being made further into the

future. We observe that while the projection errors for the United States remain among

the lowest, the errors for most other regions increase drastically as the projection horizon
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increases. Compared to other variables, yields are projected with the most certainty since

there are no significant changes in a country’s productivity from year to year. Therefore,

the errors for yields are relatively smaller than other variables for all three crops across all

countries. For the United States, errors in corn, soybeans, and wheat yields remain lower

than 10% in magnitude for all horizons, indicative of highly accurate yield projections.

Contrarily, yield projection errors for other regions (see Ukraine and Brazil, for instance)

are lower than errors in their projections for other variables, but are still visibly much

higher than the errors for the United States’ projections.

While the overall errors for other variables are higher in magnitude compared to errors

in yields, the United States consistently continues to have lower errors relative to other

countries in almost all the figures. It is reasonable to wonder, then, if the projections for

other regions being herded towards the United States has any relation or contribution to

this phenomenon. USDA can project the values for the United States very well, but there

is always room for improvement. Therefore, a higher level of accuracy in the projections

of other countries will make for a better understanding of the global environment and

can lead to an improvement in domestic projections. To see why it might be so, consider

the balance sheet relationship depicted in equation (1). The crop specific balance sheet

equation holds for each country individually in the projections, and it also holds in

summation for the whole world. Therefore, we now look at the role of herding with the

United States, and other commodity leaders (Brazil and China) in the determination of

errors.

4.1 Relationship between Herding and Bias

Results for estimation equation (7) for each of the three benchmark countries — United

States, China, and Brazil, respectively — are presented separately in tables 1 to 3. Equa-

tions (7), (8), and (9) estimate the association between error in projections and the dis-

tance in projections of a region from the benchmark country. Each column and crop panel

in shows estimation results corresponding to equation (7) with the benchmark country

specified in the table caption.

Table 1 shows the results with the United States as the benchmark country. The

coefficient on Distance from Baser (logged) measures the percentage change in the error

if the projections are 1% farther from the United States, which serves as the base country.
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The first row implies that corn total consumption and corn ending stocks projections being

more distant from the United States are associated with significantly lower projection

errors among other countries (i.e., a negative significant coefficient on Distance from Baser

(logged)). That is, decreasing the herding towards the United States in these projections

for all countries, which on average are all significantly correlated with the United States,

is associated with decreases in their errors. We observe a similar relationship for all

soybeans projections except exports, and all wheat projections except imports. Herding,

in these cases, is related to higher errors.

As the results depict, it seems that herding the projections towards the United States

is rational for corn yields, soybeans exports, and wheat imports while it is seemingly

irrational for other crop and variable combinations.

Overall, there are two main takeaways from these results. First, on average, countries

whose projections are more distant from the United States are associated with lower

projection errors for most variables across all three crops, even if marginally so. This

suggests that the projections of other countries, that are following similar trends to the

United States projections, is associated with higher bias in these countries’ projections in

most cases. Moreover, the three exceptions are corn yield, soybean exports, and wheat

imports, where greater distance from the United States in projections is significantly

associated with higher projection errors for these countries’ variables. Second, herding

toward the United States is seemingly more helpful for corn compared to other crops.

While limited information of the baseline team may result in projections for other

countries to follow and correlate with the projections of the major producers, it does

not necessarily mean that the United States trends are applicable globally. It is also

reasonable to expect that for some crops and variables, herding towards the projection

trends of China or Brazil in projections may reduce errors because of the massive global

contribution of these countries, while for others it may not. Avileis and Mallory (2022)

show that recently in corn markets, the volatility, and price information has been spilling

over from Brazil towards the United States whereas this relationship used to be the

opposite a few years ago. This motivates us to consider other major producers of the

commodities under consideration.

We use Brazil and China as two additional benchmark countries because they are

major crop producers and trade partners of the United States. We estimate equations
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(8) and (9) to repeat the analysis done for the United States and assess the relationship

between similarity in projections and projections error by setting China and Brazil as

benchmark countries instead of the United States. Tables 2 and 3 show the estimation

results from equation (7) by setting China and Brazil as base countries, respectively.

Since the projections for all countries are statistically correlated with the United States

in their trends, using other top producers as the benchmark countries allows us to evaluate

whether the other major producer countries offer an alternate error minimizing approach

to herding.

For most crops and variables in table 2, there are negative significant estimates, sug-

gesting an irrational correlation in projections. That is because increasing a country’s

projection distance from China is associated with reductions in the projection errors on

average. Similarly, in table 3, where Brazil is the benchmark country, most estimates are

negative with some differences in sign as well as magnitude compared to the previous two

tables. Corn yield, corn exports, along with wheat exports depict a significant positive

relationship between other countries’ correlation with Brazil and higher projection errors.

Despite the overall similar implications when China and Brazil are set as benchmark

countries, there are meaningful differences when compared with table 1. The relationship

between projection similarity and errors is more defined for corn when China is used as

the benchmark country. Corn yield and corn imports have positive significant coefficients,

which are also greater in magnitude, suggesting that projection trends of China are more

insightful than the United States for countries will less information. Moreover, corn yield

estimate has an even larger coefficient when Brazil is set as the benchmark country.

This suggests that given incomplete and imperfect information for a region, aligning the

projection trends towards Brazil for corn yield is associated with a greater error reduction

than herding the projections towards the United States.

Additionally, a significant estimate with a sign opposite to another benchmark country

(in tables 1, 2, and 3) presents an upper and lower bound for adjusting the projections of a

country with incomplete information. For instance, the relationship between projections

correlation and error is negative significant when China is set as benchmark and positive

significant when Brazil is the benchmark country. That suggests if Brazil is optimistic in

their outlook for corn exports while China is pessimistic in their expectation, on average

it is likely that a country with less information might be experiencing a similar optimistic
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corn exports outlook as the Brazil — the global leader in corn production. We observe

similar bounds for corn imports and soybeans exports.

5 Conclusion

While the USDA International Baseline Projections are prepared through a combination

of model-based values and expert analysts’ judgements, the baseline projections for all

other countries are found to have an underlying correlation with the United States. Our

results show that this is associated with lower bias for a few crop variables, but contributes

to higher error in other cases, compromising the overall accuracy of the projections. Given

the importance of the baseline projections in domestic agricultural policy, it is imperative

to identify where the projection correlation among countries beyond the correlation in

the realized values is increasing bias and reducing accuracy.

We employ various methods to identify the correlation in the projections of different

countries, assess their degree of accuracy, and map the relationship between projections’

similarity in terms of correlation and projections’ error. Our results show that select

variables that are grouped together in their projection trends are associated with reduced

errors. Corn yield, soybeans exports, and wheat imports are the variables where herding

the projections towards the United States is associated with more accurate projections

for the other countries. Among other crop variables, our results show that herding the

projection towards the United States is associated with significantly lower accuracy of

the projections in corn total consumption, and ending stocks, soybeans yields, imports,

total consumption, and ending stocks, and all wheat variables except imports.

These findings are highly useful for the team preparing the USDA baselines pro-

jections, as they present a simple and straight forward way to cater to incomplete and

inaccurate information for countries included in the baseline projections. The heterogene-

ity observed in our results provides a reasonable starting point for the team preparing the

baseline projections to get closer to the source of bias in the projections. Utilizing data

on the projections made from models compared to the projections after adjustments can

offer valuable insights on where and why herding occurs, and highlights the cases where

it is associated with bias reductions.
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6 Figures

Figure 1: Corn Yield—Correlation Estimates and Error Calculations

17



Figure 2: Corn Area Harvested—Correlation and Error Calculations
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Figure 3: Corn Total Consumption—Correlation and Error Calculations
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Figure 4: Corn Ending Stocks—Correlation and Error Calculations
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Figure 5: Corn Imports—Correlation and Error Calculations
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Figure 6: Corn Exports—Correlation and Error Calculations
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Figure 7: Soybeans Yield—Correlation and Error Calculations
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Figure 8: Soybeans Area Harvested—Correlation and Error Calculations
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Figure 9: Soybeans Total Consumption—Correlation and Error Calculations
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Figure 10: Soybeans Ending Stocks—Correlation and Error Calculations
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Figure 11: Soybeans Imports—Correlation and Error Calculations
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Figure 12: Soybeans Exports—Correlation and Error Calculations
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Figure 13: Wheat Yield—Correlation Estimates and Error Calculations
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Figure 14: Wheat Area Harvested—Correlation and Error Calculations
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Figure 15: Wheat Total Consumption—Correlation and Error Calculations
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Figure 16: Wheat Ending Stocks—Correlation and Error Calculations
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Figure 17: Wheat Imports—Correlation and Error Calculations
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Figure 18: Wheat Exports—Correlation and Error Calculations
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7 Tables

Table 1: Distance and Accuracy - Base country is United States

Variable Yield
Area

Harvested Imports Exports
Total

Consumption
Ending
Stocks

Corn
Distance from Baser (logged) 0.0453*** -0.0617 -0.0231 0.0525 -0.0206* -0.375***

(0.0139) (0.0551) (0.0434) (0.0788) (0.0123) (0.0793)

Soybeans
Distance from Baser (logged) -0.0226*** -0.0947 -0.8817*** 0.257* -0.2369*** -0.3801**

(0.0052) (0.1141) (0.1442) (0.1314) (0.0864) (0.1652)

Wheat
Distance from Baser (logged) -0.0207*** -0.0656*** 0.0843*** -0.2666*** -0.0286*** -0.1793***

(0.0062) (0.0132) (0.0188) (0.0994) (0.0073) (0.0341)

This table shows the estimation results for equation LoggedErrorrjh = β0 +

β1log(distance(ŶrUS
, Ŷrj )) + εrjh for each crop and variable. Each column and panel shows the

results for a separate regression for the crop-variable labeled in the table. Parentheses contain ro-
bust standard errors. ∗∗∗ p<0.01, ∗∗ p<0.05, ∗ p<0.1

Table 2: Distance and Accuracy - Base country is China

Variable Yield
Area

Harvested Imports Exports
Total

Consumption
Ending
Stocks

Corn
Distance from Baser (logged) 0.0569*** 0.0213 0.0832** -0.552*** -0.0382*** -0.2394***

(0.0181) (0.0164) (0.0395) (0.1698) (0.0146) (0.0788)

Soybeans
Distance from Baser (logged) -0.0364*** 0.0391 -0.0834 -0.3317** -0.2759*** -0.2515***

(0.0092) (0.0343) (0.0724) (0.1628) (0.0898) (0.0837)

Wheat
Distance from Baser (logged) -0.0161*** -0.1111*** 0.2483*** -0.0804 -0.0046 -0.0851**

(0.0062) (0.0257) (0.0474) (0.0867) (0.0063) (0.0423)

This table shows the estimation results for equation LoggedErrorrjh = β0 +

β1log(distance(ŶrChina
, Ŷrj )) + εrjh for each crop and variable. Each column and panel shows the

results for a separate regression for the crop-variable labeled in the table. Parentheses contain ro-
bust standard errors. ∗∗∗ p<0.01, ∗∗ p<0.05, ∗ p<0.1
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Table 3: Distance and Accuracy - Base country is Brazil

Variable Yield
Area

Harvested Imports Exports
Total

Consumption
Ending
Stocks

Corn
Distance from Baser (logged) 0.0692*** 0.0139 -0.1235*** 0.2285** -0.0345** -0.2707***

(0.0223) (0.0088) (0.0412) (0.1010) (0.0162) (0.0677)

Soybeans
Distance from Baser (logged) -0.0293*** -0.0281 -0.9279*** 0.047 -0.3403*** -0.183***

(0.0093) (0.0256) (0.1763) (0.0992) (0.1093) (0.0670)

Wheat
Distance from Baser (logged) -0.0249*** -0.0788*** 0.1848*** -0.3417** -0.0413*** -0.0486

(0.0075) (0.0190) (0.0365) (0.1518) (0.0090) (0.0320)

This table shows the estimation results for equation LoggedErrorrjh = β0 +

β1log(distance(ŶrBrazil
, Ŷrj )) + εrjh for each crop and variable. Each column and panel shows the

results for a separate regression for the crop-variable labeled in the table. Parentheses contain ro-
bust standard errors. ∗∗∗ p<0.01, ∗∗ p<0.05, ∗ p<0.1
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