"Selection, Agglomeration and Firm Productivity in Taiwan: What Impact on the High-Tech Sector?"

Syed Hasan, Allen Klaiber and Ian Sheldon

Paper prepared for presentation at "The Rise of the 'Emerging Economies': Towards Functioning Agricultural Markets and Trade Relations?", IAMO, Halle (Salle), Germany, June 25-27, 2014

Research Question and Motivation

- Efficiency of public incentives: NT\$100 billion/annum spent on science parks by Taiwanese government (Lien et al., 2007)
- Evaluating performance of science parks complex requires more rigorous approaches (Bigliardi et al. 2006)
- Empirical evidence on innovative capability, survival rate, profitability and job creation mixed (Monck, 2010)
- Consistent approach required for performance and impact assessment of science parks (Link and Siegel, 2009)

Theoretical Background

- Positive relation between density of economic activity and firm productivity (Ciccone and Hall, 1996)
- Firms in large cities have high productivity (Rosenthal and Strange, 2004)
- Larger markets attract more firms, making competition tougher (Melitz and Ottaviano, 2008)
- Sorting of high productivity firms into cities, i.e., self-selection (Baldwin and Okubo 2006)

Methodology

- Taiwanese firm-level panel data for 2009-2011 period
- Define three regions: above median population density (large), below median population density (small), and counties housing science parks
- Estimate firms' total factor productivity (TFP) for each region
- Identify impact of agglomeration and selection on firms' productivity
- Also account for self-selection whereby most productive firms locate in large region(s) (Baldwin and Okubo, 2006)

Model

- Goods produced under monopolistic competition with sunk cost of entry, firms being indexed by unit labor requirement h
- h varies across firms based on productivity draw from known cdf $G(h) \in [0,1]$, common to all regions
- Agglomeration economies introduced by assuming effective labor a increases with number of firms in region, a(N), a'>0, a''<0
- Selection modeled as proportion of firms that fail to survive product market competition in city i, $S_i \equiv 1-G(h^d_i)$, where d is cutoff productivity for survival

Hypotheses

Hypothesis 1:

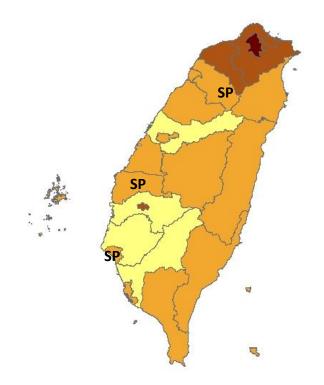
Increase in number of firms in region shifts log productivity distribution rightwards (agglomeration effect)

Hypothesis 2:

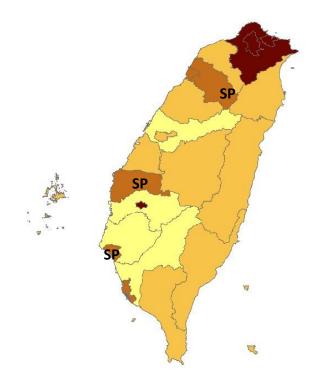
Increase in market size raises entry/survival cost, i.e., increases cut-off for unit labor requirement - greater left truncation of log productivity distribution (selection effect)

Results-TFP Estimates

Data:

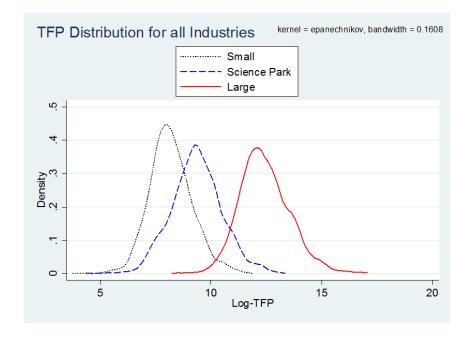

Firm-level, income statement and balance sheet; industry classification at 3-digit NAICS level

	OLS	IV	ОР
$\boldsymbol{\beta}_{k}$	0.37***	0.56***	0.29**
$\boldsymbol{\beta}_{l}$	0.56***	0.21***	0.47**

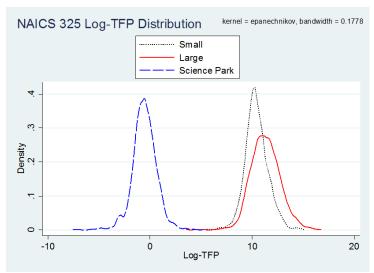

- Deflate sales
- Remove outliers
- Data limitations
 - Materials
 - Energy
 - Firm prices

Regional TFPs

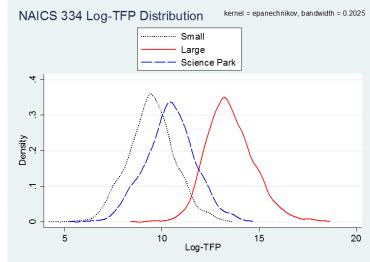
POPULATION DENSITY



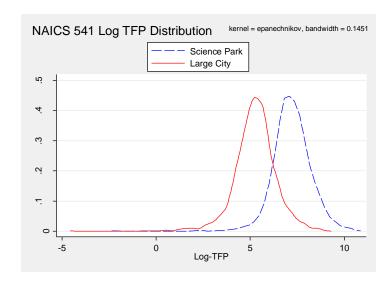
TFP-COUNTY MARKETS


Summary Statistics-Log TFP

Statistic	Below median	Science park	Above median	
N	840	1427	2388	
mean	4.107	8.32	11.77	
max	8.71	12.10	17.09	
min	-2.43	1.00	4.61	
IQR	1.23	1.35	1.42	



Inter-Industry Comparison: Technology-Intensive Occupation Levels


CHEMICAL MANUFACTURING

COMPUTERS AND ELECTRONICS

SCIENTIFIC AND TECHNICAL SERVICES

Agglomeration and Selection Variables

- Localization: Henderson et al. (1995) regional employment share of specific industry
- Urbanization: Herfindahl index computed as: $\sum_{j} s_{jrt}^{2}$ where s is employment share of two-digit manufacturing industry j, in region r at time t
- Competition: population density either diseconomies of scale or local demand

Agglomeration vs. Selection

Agglomeration and Selection in Science Parks (NAICS 334)

IQR		MED		10-TILE				
LOC	URB	Lab Den	LOC	URB	Lab Den	LOC	URB	Lab Den
1.89***	-3.4***	07**	0.48***	-0.3***	0.31***	.70	1.84	.04***
(.10)	(0.16)	(.02)	(0.01)	(.06)	(.00)	(.63)	(1.9)	(.01)

Results

Aggregate:

- Firms in large cities have highest level of productivity
- Firms located in science parks usually have intermediate productivity levels (in between large and small cities)

Within science parks:

- Firm productivity in science parks depends on technologyintensity of production process
- Agglomeration dominates selection

Conclusion

- Differentiate efficient (growth improving) and inefficient (life support) use of science parks
- Efficient use of science parks evident when used to support innovation – notably in an industry such as biotechnology
- Science park clusters may turn out to be protective shields against competition in some cases