"The Role of Intellectual Property Rights in Seed Technology Transfer through Trade: Evidence from US Field Crop Exports"

> Minyu Zhou Ian Sheldon

Contributed Paper IATRC Summer Symposium "Productivity and Its Impacts on Global Trade" Seville, Spain June 2-4, 2013



#### **Motivation**

- Issues relating to global food security back in public spotlight (FAO, 2012)
- Innovations in agricultural technology necessary to mitigate decline in yield growth rates (Martin, 2012)
- Improved seed varieties, along with chemical technology and irrigation responsible for past global yield increases (UPOV, 2009)
- Plant breeding requires large scale R&D top-20 firms re-investing 12-15% of sales/year, with a 10-15 year development cycle for new varieties



## **Motivation**

- Self-producing nature of (non-hybrid) seed makes plant breeding particularly susceptible to imitation/reproduction
- Industry lobbies hard for protection through intellectual property rights (IPRs); process intensified with advent of GM crops
- Trade important channel through which technology is transferred across borders – decisions to export often a function of effectiveness of local IPRs
- 1995 TRIPs agreement of WTO designed to harmonize IPRs for cross-border trade



## Motivation

- TRIPs applies minimum IP standards to members; specifically Article 27.3(b) extends IPRs to new plant/seed varieties
- Specifically, requirement for provision of patent protection or sui generis system such as plant breeder's rights as provided in International Union for Protection of New Plant Varieties (UPOV)\*
- Objective is to evaluate impact of countries' IPRs on field crop seed imports from US, and also allowing for how growing GM crops might affect relationship

\* First signed in 1968, with revisions in 1978 and 1991



#### **U.S. Seed Exports**





Source: USDA GATS

#### **U.S. Field Crop Seed Exports**





Source: USDA GATS

#### **IPRs and Trade**

- Theory ambiguous about impact of IPRs on trade (Grossman and Helpman, 1995):
  - market expansion vs. market power
  - FDI and licensing vs. trade
- Essentially an empirical question: evidence for both hypotheses in economics literature - Maskus and Penubarti (1995); Smith (1999); Ivus (2010)
- Mixed results for impact of IPRs on seed trade: no effect Yang and Woo (2006) and Eaton (2009); variation across crop types (Galushko, 2012) all using version of gravity equation



- Key problem is how to deal with zero observations in bilateral trade data
- Helpman, Melitz and Rubinstein's (2008) two-stage estimation method has very strong distributional assumptions (Silva and Tenreyro, 2009)
- Westerlund and Wilhelmsson (2011) develop fixed effects panel Poisson maximum likelihood (ML) method that can be applied to continuous variables
- Approach takes care of problems of zero trade and heteroskedasticity, as well as bias due to countryspecific heterogeneity



Common formulation of gravity model is:

$$\lambda_{ijt} = E(M_{ijt} | Y_{it}, Y_{jt}, D_{ijt}) = \exp(\gamma D_{ijt}) Y_{it}^{\beta_1} Y_{jt}^{\beta_2}$$
(1)

where  $M_{ijt}$  is bilateral trade between *i* and *j*, at time *t*  $Y_{it}$  and  $Y_{jt}$  are GDP levels of *i* and *j*, and  $D_{ijt}$  are dummy variables such as membership of FTAs

Cross-section estimates of (1) typically biased due to limited heterogeneity between country pairs – instead with panel data use N=n(n-1) country-pair fixed effects,  $\alpha_{ii}$ , entering (1) multiplicatively:

 $= \exp(\alpha_{ii}) \Lambda_{iit}$ 

$$E(M_{ijt}|Y_{it},Y_{jt},D_{ijt},\alpha_{ij}) = \exp(\alpha_{ij} + \gamma D_{ijt})Y_{it}^{\beta_1}Y_{jt}^{\beta_2}$$



Implicitly defines regression:

$$\boldsymbol{M}_{ijt} = \exp(\boldsymbol{\alpha}_{ij})\boldsymbol{\lambda}_{ijt} + \boldsymbol{e}_{ijt}$$

which can be written as:

 $M_{ijt} = \exp(\alpha_{ij})\lambda_{ijt}\upsilon_{ijt} \qquad (2)$ where  $e_{ijt}$  is mean zero disturbance term, other is  $\upsilon_{ijt} = 1 + e_{ijt} / \exp(\alpha_{ij})\lambda_{ijt}$ , heteroskedastic disturbance term with  $E(\upsilon_{ijt} | Y_{it}, Y_{jt}, D_{ijt}, \alpha_{ij}) = 1$ 

To circumvent possibility that  $\alpha_{ij}$  is correlated with explanatory variables, use fixed rather than random effects estimation



#### Common approach to estimate (2) is:

$$In(M_{ijt}) = \alpha_{ij} + In(\lambda_{ijt}) + In(\upsilon_{ijt})$$
$$= \alpha_{ij} + In(D_{ijt}) + In(Y_{it}) + In(Y_{jt}) + In(\upsilon_{ijt})$$
(3)

- (3) can only be estimated with OLS if  $M_{ijt} \neq 0$ , and dropping observations  $M_{ijt} = 0$  induces bias
- Alternative is to estimate (2) directly through exponential regression function:

$$\lambda_{ijt} = \exp(\alpha_{ij} + \gamma D_{ijt} + \beta_1 \ln(Y_{it}) + \beta_1 \ln(Y_{jt}))$$
(4)

which follows from multiplicative form of (1), and ensures non-negativity of  $M_{ijt}$ 



# **Estimating Model and Data**

Estimate specifications of (3) and (4) with data for 134 countries over period 1985-2010

| Variable                       | Data source                            |
|--------------------------------|----------------------------------------|
| Field crop seed imports (US\$) | USDA's GATS (Global Agricultural Trade |
|                                | System)                                |
| GDP (constant 2000 US\$)       | World Bank's World Development         |
|                                | Indicators                             |
| Crop production(tons)          | FAOSTAT                                |
| Free Trade Agreement (FTA)     | Office of the USTR web site            |
| UPOV78, UPOV91                 | UPOV web site                          |
| TRIPs                          | WTO web site                           |
| GM crops planting status       | James - Global Status of               |
|                                | Commercialized Biotech/GM Crops, 1996- |
|                                | 2009                                   |

#### **Results: Linear Fixed Effects**

|              | (1)        | (2)        | (3)        | (4)        |
|--------------|------------|------------|------------|------------|
| VARIABLES    | logseedIMP | logseedIMP | logseedIMP | logseedIMP |
| logGDP       | 1.231**    | 1.240**    | 1.170**    | 1.188**    |
|              | (0.548)    | (0.553)    | (0.549)    | (0.556)    |
| logCropProd  | 0.316      | 0.314      | 0.310      | 0.307      |
|              | (0.291)    | (0.291)    | (0.284)    | (0.283)    |
| FTA          | 0.196      | 0.211      | 0.168      | 0.202      |
|              | (0.329)    | (0.325)    | (0.335)    | (0.327)    |
| growGM       | 0.174      | 0.183      | 0.125      | 0.143      |
|              | (0.260)    | (0.262)    | (0.258)    | (0.260)    |
| WTO_TRIPs    |            |            | 0.881**    | 0.911**    |
|              |            |            | (0.401)    | (0.409)    |
| WTO_trans    |            |            | 0.433      | 0.456      |
|              |            |            | (0.404)    | (0.405)    |
| UPOV         |            | -0.0593    |            | -0.134     |
|              |            | (0.184)    |            | (0.187)    |
| Observations | 1,643      | 1,643      | 1,643      | 1,643      |
| Countries    | 134        | 134        | 134        | 134        |

#### **Results: Poisson Fixed Effects**

|              | (5)      | (6)      | (7)      | (8)      |
|--------------|----------|----------|----------|----------|
| VARIABLES    | seedIMP  | seedIMP  | seedIMP  | seedIMP  |
| logGDP       | 2.259*** | 2.223*** | 2.058*** | 2.013*** |
|              | (0.690)  | (0.690)  | (0.749)  | (0.741)  |
| logCropProd  | 0.365    | 0.376    | 0.197    | 0.205    |
|              | (0.597)  | (0.595)  | (0.491)  | (0.484)  |
| FTA          | -0.150   | -0.233   | -0.118   | -0.220   |
|              | (0.253)  | (0.218)  | (0.250)  | (0.221)  |
| growGM       | 0.473    | 0.447    | 0.446    | 0.412    |
|              | (0.320)  | (0.315)  | (0.310)  | (0.305)  |
| WTO_TRIPs    |          |          | 1.152**  | 1.183**  |
|              |          |          | (0.530)  | (0.515)  |
| WTO_trans    |          |          | 0.863    | 0.906    |
|              |          |          | (0.589)  | (0.590)  |
| UPOV         |          | 0.160    |          | 0.196    |
|              |          | (0.251)  |          | (0.276)  |
| Observations | 3,214    | 3,214    | 3,214    | 3,214    |
| Countries    | 134      | 134      | 134      | 134      |

| Results: Linear Fixed Effects |            |            |            |            |
|-------------------------------|------------|------------|------------|------------|
|                               | (1)        | (2)        | (3)        | (4)        |
| VARIABLES                     | logseedIMP | logseedIMP | logseedIMP | logseedIMP |
| logGDP                        | 1.231**    | 1.387**    | 1.170**    | 1.316**    |
|                               | (0.548)    | (0.538)    | (0.549)    | (0.539)    |
| logCropProd                   | 0.316      | 0.280      | 0.310      | 0.271      |
|                               | (0.291)    | (0.290)    | (0.284)    | (0.280)    |
| FTA                           | 0.196      | 0.280      | 0.168      | 0.270      |
|                               | (0.329)    | (0.300)    | (0.335)    | (0.303)    |
| growGM                        | 0.174      | 0.0916     | 0.125      | 0.0484     |
|                               | (0.260)    | (0.265)    | (0.258)    | (0.261)    |
| UPOV78                        |            | 0.244      |            | 0.173      |
|                               |            | (0.233)    |            | (0.234)    |
| UPOV91                        |            | -0.907***  |            | -0.932***  |
|                               |            | (0.319)    |            | (0.320)    |
| UPOV78_91                     |            | 1.032**    |            | 0.999**    |
|                               |            | (0.482)    |            | (0.484)    |
| WTO_TRIPs                     |            |            | 0.881**    | 0.924**    |
|                               |            |            | (0.401)    | (0.425)    |
| WTO_trans                     |            |            | 0.433      | 0.470      |
|                               |            |            | (0.404)    | (0.412)    |
| Observations                  | 1,643      | 1,643      | 1,643      | 1,643      |
| Countries                     | 134        | 134        | 134        | 134        |

| Results: Poisson Fixed Effects |          |          |          |          |
|--------------------------------|----------|----------|----------|----------|
|                                | (5)      | (6)      | (7)      | (8)      |
| VARIABLES                      | seedIMP  | seedIMP  | seedIMP  | seedIMP  |
| logGDP                         | 2.259*** | 2.513*** | 2.058*** | 2.324*** |
|                                | (0.690)  | (0.662)  | (0.749)  | (0.748)  |
| logCropProd                    | 0.365    | 0.340    | 0.197    | 0.180    |
|                                | (0.597)  | (0.588)  | (0.491)  | (0.484)  |
| FTA                            | -0.150   | -0.253   | -0.118   | -0.221   |
|                                | (0.253)  | (0.200)  | (0.250)  | (0.202)  |
| growGM                         | 0.473    | 0.483    | 0.446    | 0.452    |
|                                | (0.320)  | (0.310)  | (0.310)  | (0.302)  |
| UPOV78                         |          | 0.275    |          | 0.278    |
|                                |          | (0.287)  |          | (0.306)  |
| UPOV91                         |          | -0.485   |          | -0.380   |
|                                |          | (0.454)  |          | (0.524)  |
| UPOV78_91                      |          | 1.156*   |          | 0.992    |
|                                |          | (0.609)  |          | (0.679)  |
| WTO_TRIPs                      |          |          | 1.152**  | 1.046*   |
|                                |          |          | (0.530)  | (0.552)  |
| WTO_trans                      |          |          | 0.863    | 0.741    |
|                                |          |          | (0.589)  | (0.607)  |
| Observations                   | 3,214    | 3,214    | 3,214    | 3,214    |
| Countries                      | 134      | 134      | 134      | 134      |

# Summary

- IP standards contentious issue in trade between developed and developing countries
- Investigate if IPRs promote or hinder seed technology diffusion through trade using data for 134 countries over period 1985-2010
- Estimate standard gravity model using Poisson fixed effects estimator
- Evidence TRIPs has positive effect on US seed exports
- Key concerns with results: GM data issues and how to capture enforcement of IPRs

