"How to Make a Good Presentation"

Ian Sheldon

Ohio State University

Overview

- Putting the presentation together
- Making the presentation
- After the presentation

Putting the presentation together

- Think about setting/audience
- Limit number of slides
- Use simple bullet points on each slide:
 - easy to follow
 - prompts for you as speaker
- Use clear fonts, and keep bullets short
- Have a pdf version of presentation!

Putting the presentation together

- Clear outline of paper being presented:
 - motivation
 - previous literature
 - objective of research
 - the "bottom line"
- Succinct description of model being used
- Provide statement of key results
- Conclusions and future research

Making the presentation

- Set/check ground-rules with moderator
- Adapt pace of talk to time constraints
- Relax and engage audience
- Ensure everyone can see screen
- Follow time-signals from moderator
- If time is running out summarize

Some typical pitfalls.....

- Garish slides!
- Slides based on actual pages of the paper
- Excessive use of mathematics
- Too many slides
- Tables of econometric results in small font

Econometric Model and Results

- Fixed Effects ML Poisson method
- > Lots of data
- Econometric problems
- > Useless results
- > Need to start again...

The world price for trade between the home country and foreign country i is $p^{wt} \equiv p_x^{*t}/p_y$. Notice that p^{wt} is thus foreign country i's terms of trade. Defining $\tau \equiv 1+t$ and $\tau^{*t} \equiv 1+t^{*t}$, we have that $p = \tau p^{wt}$ and $p^{*t} = (1/\tau^{*t})p^{wt}$. Since the home country applies a non-discriminatory tariff, we thus see that $p^{w1} = p^{w2} \equiv p^w$; that is, the two foreign countries must share the same terms of trade when the home country adopts an MFN tariff policy. We thus have that $p = \tau p^w$ and $p^{*t} = (1/\tau^{*t})p^w$. Finally, we note that the home country's terms of trade in this MFN setting is given as $1/p^w$.

In a given country, once the local and world prices are determined, all economic quantities (production, consumption, tariff revenue, imports, exports) are also determined. In turn, for a given set of tariffs, $(\tau, \tau^{*1}, \tau^{*2})$, once we determine a market-clearing world price, $\tilde{p}^w(\tau, \tau^{*1}, \tau^{*2})$, then all local prices are determined. This follows since the pricing relationships just presented then yield the local prices as $p(\tau, \tilde{p}^w) = \tau \tilde{p}^w$ and $p^{*i}(\tau^{*i}, \tilde{p}^w) = (1/\tau^{*i})\tilde{p}^w$, respectively. Finally, the market-clearing world price is determined as the world price which ensures that the home-country imports of good x equals the sum of exports of good x from foreign countries 1 and 2; in other words, $\tilde{p}^w(\tau, \tau^{*1}, \tau^{*2})$ is the value for p^w which solves

$$M(p(\tau, p^w), p^w) = E^{+1}(p^{+1}(\tau^{+1}, p^w), p^w) + E^{+2}(p^{+2}(\tau^{+2}, p^w), p^w).$$
 (1)

As is standard, for each country, we assume as well that import and export functions are defined in a manner that satisfies trade balance requirements:

$$p^{w}M(p, p^{w}) = E(p, p^{w})$$
 (2)
 $M^{*i}(p^{*i}, p^{w}) = p^{w}E^{*i}(p^{*i}, p^{w}) \text{ for } i = 1, 2,$

where $E(p, p^w)$ denotes home-country exports of good y and $M^{*i}(p^{*i}, p^w)$ represents foreign-countryi imports of good y. The market-clearing requirement for good y is then implied by (1) and (2).

Source: Bagwell and Staiger, 2012

The First-Order Conditions

My math is awesome!!!

Differentiating

$$\log A_t = (1 - \rho) \log A^* + \rho \log A_{t-1} + \epsilon_t$$

$$L = E_{t} \sum_{i=0}^{\infty} \beta^{i} \left[U(C_{t+i}) - V(N_{t+i}) \right]$$

$$+ E_{t} \sum_{i=0}^{\infty} \beta^{i} \lambda_{t+i} \left[A_{t+i} K_{t+i-1}^{\alpha} N_{t+i}^{1-\alpha} + (1-\delta) K_{t+i-1} - C_{t+i} - K_{t+i} \right]$$

$$U(C_{t}) - V(N_{t}) + \lambda_{t} \left(A_{t} K_{t-1}^{\alpha} N_{t}^{1-\alpha} - C_{t} - K_{t} + (1-\delta) K_{t-1} \right)$$

$$+ \beta E_{t} \left[\lambda_{t+1} \left(A_{t+1} K_{t}^{\alpha} N_{t+1}^{1-\alpha} + (1-\delta) K_{t} \right) \right]$$

We get following first-order conditions:

$$\begin{split} \frac{\partial L}{\partial C_t} &: \quad U'\left(C_t\right) - \lambda_t = 0 \\ \frac{\partial L}{\partial K_t} &: \quad -\lambda_t + \beta E_t \left[\lambda_{t+1} \left(\alpha \frac{Y_{t+1}}{K_t} + 1 - \delta\right)\right] = 0 \\ \frac{\partial L}{\partial N_t} &: \quad -V'\left(N_t\right) + (1 - \alpha)\lambda_t \frac{Y_t}{N_t} = 0 \\ \frac{\partial L}{\partial \lambda_t} &: \quad A_t K_{t-1}^{\alpha} N_t^{1-\alpha} - C_t - K_t + (1 - \delta)K_{t-1} = 0 \end{split}$$

Table 5
The determinants of SO₂, CO₂, and BOD emissions per capita (differenced GMM).

Variable	SO ₂ (Protocol)	SO ₂	CO ₂ (Protocol)	CO ₂	BOD (Protocol)	BOD
$\ln E_{tt-1}$	0.67***	0.68***	0.60***	0.60***	0.57***	0,58***
	(70.81)	(90.02)	(31.72)	(28.38)	(26.73)	(21,52)
S	1.10***	1.11***	0.82***	0.84***	-0.79***	-0.95***
	(7.82)	(7.77)	(6.95)	(6.21)	(-4.91)	(-6.96)
S ²	-0.907***	-0.96***	-0.43***	-0.42***	-0.20**	-0.14*
	(-8.33)	(-15.62)	(-5.47)	(-4.63)	(-2.02)	(-1.94)
K/L	0.013	0.028	0.079**	0.078**	0.17***	0.22***
	(0.32)	(0.7)	(2.13)	(2.17)	(4.91)	(7.24)
(K/L) ²	-0.031***	-0.033***	-0.014***	-0.013***	-0.043***	-0.045***
	(-3.66)	(-5.56)	(-3.52)	(-3.63)	(-10.57)	(-9.81)
(K/L)S	0.27***	0.28***	0.095***	0.089***	0.21***	0.20***
	(5.22)	(8,94)	(3.16)	(2.72)	(6.1)	(6.76)
Т	0.0014***	0.0018***	0.0024***	0.0026***	0.0005	0.00050*
	(4.33)	(7,96)	(14.41)	(20.93)	(1.43)	(1.9)
T relative (K/L)	-0.0013*	-0.0016**	-0.0014***	-0.0014**	-0.0039***	-0.0048***
	(-1.66)	(-2.37)	(-2.65)	(-2.55)	(-5.77)	(-6.41)
T relative (K/L) ²	0.0011***	0.0011***	0.00066***	0.00064***	0.0017***	0.0019***
	(4.19)	(6.12)	(5.92)	(6.42)	(6.32)	(5.99)
T relative S	-0.0010*	-0.0011**	-0.00059*	-0.00065*	0.0018***	0.0023***
	(-1.79)	(-2.27)	(-1.83)	(-1.76)	(424)	(5.45)
T relative S ²	0.00074***	0.00075***	0.00037***	0.00036***	0.00023**	0.00017*
	(8.01)	(12.18)	(4.6)	(4.21)	(2.11)	(3.13)
T rel (K/L) rel S	-0.0015***	-0.0015***	-0.00077***	-0.00074***	-0.0013***	-0.0013***
	(-6.07)	(-11.00)	(-4.49)	(-4.48)	(-5.14)	(-6.07)
Helsinki Protocol	-0.097***	-	-	-	-	-
	(-4.01)					
Oslo Protocol	-0.040***	-	-	-	-	-
	(-2.93)					
Kyoto Protocol	-	-	-0.0025	-	-	-
			(-0.60)			
Protocol on Water and Health	-	-	-	-	-0.010	-
					(-1.20)	
Constant	-0.0067***	-0.0067***	0.0012***	0.0010***	-0.0014**	-0.0010
	(-11.22)					(-1.41)
Observations	2152	(-9.06) 2152	(3.14) 2152	(3.27) 2152	(-2.55) 1159	1159
Number of countries	88	88	88	88	83	83
	76.29	75.99	76.27	79.84	70.39	67.46
Sargan test						
AR(1)	-4.41*** -0.01	-4.44*** -0.00	-3.45***	-3.52***	-3.27*** 1.74*	-3.38*** 1.75*
AR(2)	-0.01	-0.02	-0.94	-0.94	1.74*	1.75*

Note: Values in parentheses are t-values.*, ** and *** indicate "significant" at the 10% level, the 5% level and the 1% level, respectively. Trade openness, per capita GDP, and its square term are instrumented for using predicted openness, predicted per capita GDP, and predicted its square term, respectively.

After the Presentation

- Answer audience questions succinctly
- No bluffing.....
- Finish when moderator says you are done
- Thank audience
- Stay for other speakers
- Engage audience members afterwards

