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Abstract 
 
Crop insurance and its related components, such as premium subsidies, have impacts on farm 
management decisions, production practices, and output. We use county-level USDA survey data 
combined with instrumental variables analysis to investigate asymmetric impacts of crop 
insurance on corn and soybean yield variance. Our results indicate an increase in yield downside 
risk as crop insurance participation rates increase. We also find an increase in drought 
susceptibility, likely due to expansion to lower-quality farmland and changes in input use. 
Increased yield variability could have effects on prices, farm income variability and farmer 
welfare. 
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Introduction 

Agricultural sustainability has increased in political significance, even occupying significant 

space in the 2018 Farm Bill. The farm financial downturn that started in 2013 has shown the 

effect that weather shocks, such as droughts, can have on farm incomes and the farm economy. 

Increased frequency and increased susceptibility to these events are therefore of concern to 

farmers going forward. Since farm policy plays a role in protecting farmers from such 

downturns, it is important to investigate their effectiveness and to determine the existence of any 

unintended effects. 

Many studies have investigated moral hazard and adverse selection in crop insurance. As 

the proportion of insured acres has increased to above 80%, concerns over adverse selection have 

decreased but not disappeared in recent years. Subsidies in the insurance market only increase 

these concerns. Several studies have noted recent increases in drought susceptibility for major 

crops in the Midwest (Lobell et al. 2014) and, perhaps as a result, recent increases in price 

volatility (Newman and McGroarty, 2017). Increased price and yield volatility in agricultural 

markets can affect production planning and therefore farm incomes over time. We investigate 

whether crop insurance and moral hazard play a role in changing variability and drought 

susceptibility of U.S. corn and soybean yields. Specifically, we explore the impact of crop 

insurance on the partial variance of corn and soybean yields. Exploring partial moments will 

reveal much richer information than an analysis of full moments alone and will specifically allow 

an analysis of the effects due to droughts. 

Several studies have investigated the existence of moral hazard in crop insurance, with 

most focusing on how moral hazard can affect input use. Wu (1999), Goodwin et al. (2004), and 

Yu, Smith, and Sumner (2018) independently show that crop insurance and its subsidies can 
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have a small but statistically significant effect on crop acreage. Others have shown that crop 

insurance can affect chemical input use on the farm (Smith and Goodwin, 1996; Claassen, 

Langpap, and Wu, 2017). O’Conner (2013) suggests that reductions in on-farm risk 

management, such as conservation till or cover cropping, are possible while covered by crop 

insurance if crop insurance is seen as a (cost- and time-saving) substitute to these practices. Such 

reductions in on-farm risk management practices can make farm output more susceptible to 

negative shocks such as droughts. However, Weber, Key, and O’Donoghue (2016) find little 

effect on input use. Schoengold, Ding, and Headlee (2015) find no significant evidence of moral 

hazard related to crop insurance participation, though indemnity payments were found to 

increase the use of no-till and decrease the use of conservation till.1 This finding may suggest 

that the ease of use (and time savings) may be of higher value than other cost factors. 

Few studies have looked at how output (yield) is potentially affected by crop insurance. 

Coble et al. (1997) show that expected indemnities can affect crop production of covered crops 

in poor production years. Cornaggia (2013) finds that crop insurance can increase farm 

productivity by allowing farmers to gain greater access to financing options. Annan and 

Schlenker (2015) show increased sensitivity of corn and soybean yields to extreme heat under 

crop insurance but no significantly different effect from moderate heat. On the other hand, Yu 

and Babcock (2010) use a drought index formed from observations of precipitation and 

temperature and find that corn and soybean yields have become more drought tolerant over time, 

although this finding is not linked to crop insurance use. Both Annan and Schlenker (2015) and 

 
1 We define no-till here as any practice in which residue cover was found on >30% of the farmed 

area. 
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Yu and Babcock (2010) use measures of extreme weather that do not account for various factors 

that affect yield losses, such as available soil moisture. 

We draw on the work of Annan and Schlenker (2015), Yu and Babcock (2010), and 

Lobell et al. (2014) and update their findings in a few important ways. Primarily, we expand on 

findings in Lobell et al. (2014) and attempt to identify the contribution of crop insurance to 

changes in yield risk, particularly to drought sensitivity. As in Lobell et al. (2014), we use the 

vapor pressure deficit as our measure of extreme weather to account for soil moisture and other 

factors that better explain yield losses during drought events. Additionally, we specifically 

account for the issue of endogeneity in crop insurance use, unlike studies such as Annan and 

Schlenker (2015). Unlike prior studies, we investigate yield variance as the outcome variable and 

account specifically for asymmetric effects, which can help distinguish between productivity-

enhancing versus downside-risk-increasing effects. Finally, we account for the proliferation of 

genetically modified (GM) crops and other economic factors that have affected yield risk profiles 

concurrently with the expansion of crop insurance. Hence, our study gives better insights into 

risk changes from factors related to underlying resource management shifts. 

Our results suggest that crop insurance is associated with increases in yield variability 

and in drought sensitivity. Increases in yield risk can be considered an expected and allowable 

byproduct of crop insurance as farmers are able to take on more risk to expand production. 

Indeed, the expansion in crop insurance since the mid-1990s has also been accompanied by 

considerable increases in yields, perhaps not coincidentally. However, our results suggest that 

some adverse effects potentially exist and are worth further study. Increases in drought 

susceptibility can mean an increase in the frequency of extreme events that occurred post-2012, 

especially under expected increases in crop stress from climate change. 
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Crop Insurance and Yield Variability 

Crop insurance can affect crop yield variability and drought sensitivity through various channels. 

Studies on the effect of moral hazard in crop insurance have yielded differing conclusions, 

though some have found changes in input use and acreage. Acreage expansion will typically 

increase yield variance for several reasons. Primarily, however, variance in land quality and 

management abilities increases as acres increase (Yang, Koo, and Wilson, 1992), affecting 

overall yield variance. Productivity increases (higher yields) can also lead to higher yield 

variance. Interactions between weather and high productivity factors can mean that yields are 

high during good growing conditions but fall to typical levels when conditions are less favorable. 

Similar factors contribute to yield-increasing inputs such as fertilizer often being categorized as 

risk-increasing inputs in the literature (Antle 2010). 

Similarly, nonagronomic factors can also play a role in determining a link to yield 

variance and crop insurance through increased access to short-term financing that can increase 

productivity (Cornaggia, 2013; Ifft, Kuethe, and Morehart, 2015). Decreases in risk exposure can 

also increase technology adoption (Aldana et al. 2011) which can affect yield risk in ways that 

are difficult to determine ex ante. 

Changes in land management can also be a factor that cause changes in crop yield 

variance both in the near term and over time. If crop insurance leads to changes in tillage 

practices or allows substitution from practices that maintain land quality over time, then yields 

can become more variable in the long run. One effect that results from such changes over a 

relatively short window is a change in drought susceptibility of yields. As acres expand, changes 
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in planting density and increases in soil tilling can also reduce organic matter in the topsoil and 

decrease the water-holding capacity of the soil (Balesdent, Chenu, and Balabane, 2000). 

Different sources can create changes in yield variance under crop insurance. Their effects 

on the symmetry of the distribution of crop yields likely also differ. Understanding how the 

upper tail of the distribution of yield changes relative to the lower tail under crop insurance is 

important from a policy perspective. Changes in the upper tail typically imply increases in 

productivity and can sometimes be accompanied by changes in the lower tail (downside risk) as 

well. Weighing the costs and benefits of these changes is important for policy makers. Some 

understanding of the source of these changes is also important. Particularly for field-crop 

agriculture, changes to land management and soil traits that affect drought and other downside 

risks can increase the cost of providing crop insurance over time and can also affect long-run 

productive capacity. Therefore, understanding how policy affects the symmetry of yields is of 

significant policy relevance. 

 

Empirical Specification 

To investigate the effect of crop insurance on downside risk, we follow a method outlined in 

Antle (2010) that uses partial moments to estimate asymmetric effects of explanatory variables 

on yield distributions. Antle points out that when factors induce a symmetric effect on a 

probability distribution, a partial and full moment analysis yield identical results when looking at 

even moments. However, when effects are asymmetric, estimated coefficients are different and 

have different behavioral implications if individuals are assumed to value upside and downside 

risks differently. 
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To derive estimation equations, we first treat corn or soybean yield (Y ) as a random 

variable with a lower bound 0 and an upper bound, g g , which is determined by factors such as 

crop/variety genetics . Thus, we define the conditional probability density function of yield as 

(Y | x) on the finite interval 0,g ; x  is a vector of factors that affect the moment of interest. 

The conditional expectation of yield, which we represent as 1 x  , is defined as 

(1)  
1

x   
0

g

 Y(Y | x)dY .  

Higher-order moments are defined as 

(2) 
 

p
x   

0

g

 Y  
1

x  p
 Y |x dY  

 for p  2, 3, 4,  

 

The partial moment is taken with respect to a reference point, r . Given a reference point, we 

define the partial moments as 

(3)  
p
 x,r  

r

g

 Y  r p
(Y | x);  

(4)  
p
 x,r  

0

r

 Y  r p
(Y | x) ,  

where 
p
  refers to the upper partial moment and 

p
  to the lower partial moment. In this study, 

we set r  1 t   such that 
p
 x,r  and 

p
 x,r  are defined with respect to a quadratic trend of 

yield of the specific crop of interest. Empirical equivalents of equations (1), (3), and (4) can be 

specified as  

(5)  Y  ̂1 X   e ;  

(6)  ep  ̂
p
 X   p

;  
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(7)  ep  ̂
p
 X   p

,  

where ep  and ep  are the predicted residuals ( e) from equation (5) raised to the power p for 

values of e  0 and e  0, respectively, given the reference, r  1 t  . Specifically, we generate 

predicted values of e  in two steps. We first fit a quadratic trend to both corn and soybean yields. 

The predicted residuals are scaled proportionally to their distance from the trend yield and 

centered on 2016 predicted yields to approximate a stationary distribution for corn and soybeans. 

Equation (5) is then estimated using the new yield distributions. Predicted residuals from 

equation (5) are used to estimate equations (6) and (7). As Pope and Just (1977) point out, the 

predicted residuals of equation (5) can serve as unbiased estimators of the disturbance terms that 

give rise to the distribution of Y . In general, 
p

 and 
p
 are heteroskedastic, and 

heteroskedasticity-corrected estimation procedures must be used. Finally, we combine equations 

(6) and (7) to estimate them as a single equation. Expanding to reveal key parameters, we derive  

(8)  ep  ̂
p
  I  XI   1  ̂ p

  I  XI   p
 1  p

;  

(9)  ep  ̂
p
  I 1D   XI ,D   1  ̂ p

  I 1D   XI ,D   p
 1  p ,  

where   is an indicator such that  1 when e  0 and 0 otherwise; D  is an indicator that 

represents the occurrence of a drought; XI ,D
 is a vector of exogenous covariates that affect crop 

yield variability and excludes the measures of crop insurance use and drought.2 Equation (8) 

 
2 Exogenous here refers to variables not directly under the influence of farmers. Hence, they are 

unlikely to suffer from issues that are a threat to causal identification. Variables such as crop 

insurance premiums have been excluded from X  since insurance premiums, in addition to 

representing relative risks across counties, are also influenced by management practices. 
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estimates the effect of crop insurance use on yield variance. Equation (9) includes an interaction 

of crop insurance use and the occurrence of a drought to determine the relative sensitivity of crop 

yield to the occurrence of a drought. The parameters  and 1   represent the effect of crop 

insurance participation rates ( I ) on the upper and lower partial moments, respectively; 

1 D  is a final variable of interest, representing the additional effect of crop insurance 

participation on yield downside risk given a drought occurred.  For this study, we take p  2, 

making ̂
p
  and ̂

p
  similar to the definition of the semi-variance. We also estimate the upper 

and lower partial variances of both corn and soybeans in the same equation.3 

 

Endogeneity of Crop Insurance Participation with Yield Variance 

Direct estimation of equations (8) and (9) would yield biased estimates of the effect of crop 

insurance use on yield partial variances. A few studies have discussed potential endogenous 

factors that would affect a study of crop insurance impacts at the national level and with the use 

of aggregated data. Glauber (2013) points out that crop insurance adoption tends to be highest in 

low-risk regions, which would lead to a downward bias in estimating the effect of crop insurance 

on yield variance. Yet weather risks have potentially increased over time as the use of crop 

insurance has also increased, driving the direction of bias in the opposite direction. 

Finger (2012) points out that data aggregation leads to a downward bias in the estimation 

of a variance effect in farming; negative correlations across farms often lead to aggregate-level 

 
3 The underlying assumption that drives our empirical analysis is that once controlling for crop 

specific fixed effects and our included covariates, the variation that remains will be identical for 

each crop. 
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estimates of yield variance to be lower than individual-level estimates. Farmers may also change 

coverage levels based on anticipated outcomes before the season, which would play a role in 

affecting identification. Such changes, related to intertemporal adverse selection discussed in 

Coble et al. (1996), would induce a spurious positive relationship between crop insurance 

participation and yield variability due to the timing of sign-up rather than through a causal 

impact of crop insurance on farm yield variability. We include fixed effects in our estimation, 

which helps to reduce the impact of some of these potential biases. However, fixed effects alone 

are unlikely to eliminate all endogeneity issues. To further control for endogeneity, we apply an 

instrumental variables (IV) technique. 

 

Crop Insurance Policies and Their Use as Instruments 

The literature on crop insurance has previously identified two instruments for crop insurance 

participation based on national policy changes. Schoengold, Ding, and Headlee (2015) proposed 

an instrument for crop insurance participation based on changes in national policy that shifted 

trends in participation at specific points in time. Key Farm Bill updates in 1994, 2000, 2008, and 

2014 affected crop insurance participation. The instrument exploits changes in crop insurance 

use from policies that initially involved mandates then, later, other incentives. The Crop 

Insurance Reform Act of 1994 was passed to decrease farmer reliance on ad hoc government 

payment programs. The program tied access to some federal programs to participation in crop 

insurance. The act also introduced catastrophic risk protection (CAT), which covered 50% of 

yield losses at 60% (now 55%) of the expected market price. This policy shifted participation 

along the extensive margin, with most sign-up happening at the catastrophic level after its 

passage (Glauber, 2013).  
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To encourage higher buy-up coverage, the Agricultural Risk Protection Act of 2000 

increased subsidy rates at higher buy-up levels. Buy-up policies covered 9% of eligible acres 

before the act was passed but rose to above 60% by the late 2000s. The 2000 act therefore had a 

bigger effect on the intensive margin of crop insurance participation. The 2008 and 2014 Farm 

Bills also introduced subsidy rate changes and additional changes that further encouraged higher 

buy-up rates. To form the first instrument, we use indicators that are set to 1 for years within the 

respective policy periods and 0 otherwise and regress these on the crop insurance participation 

rates in the first stage of a multistage routine. 

The second instrument is based on policy changes to subsidy rates, defined as the total 

national subsidies granted divided by the total national premiums. Hence, for each of the yield 

and revenue protection coverages, we use total subsidies divided by total premiums for each of 

the 75% and 65% coverage levels for yield and revenue protection. Like Yu, Smith, and Sumner 

(2018), we exclude the 1999 policy year because of potential bias, where policies were 

themselves influenced by weather events. This second instrument differs from the first 

instrument as crop insurance subsidies directly influence demand for crop insurance and are 

unrelated to other programs. As in Yu, Smith, and Sumner, we use the 65% and 75% coverage 

levels because observations exist for all years. 

Comparing the results produced from the two instruments will help us to understand how 

well we have identified the effect of interest. We expect that both instruments, if generating 

exogenous variation, will produce similar results. The timing of passing crop insurance 

legislation was typically outside of years in which shocks to yields of corn and soybeans 

occurred. Additionally, our specification uses the lag of crop insurance participation averaged 

over the prior 3 years to reduce the effect of intertemporal adverse selection. We also include 



13 

fixed effects to control for systemic differences in yield risks across counties. Crop-county-

specific trends are also included. 

 

Instrumental Variables Estimation 

IV estimation of equations (8) and (9) requires consideration of two additional empirical 

challenges. First, the crop insurance participation rate, I , is continuous and bounded between 0 

and 1. In a two-stage procedure, as used in Schoengold, Ding, and Headlee (2015) and Yu,Smith, 

and Sumner (2017), first-stage estimation proceeds via 

(10)  I  Z X   ,  

where Z are instruments and equation (10) is typically a linear function. However, Papke and 

Wooldridge (2008) point out that I  being continuous and bounded between 0 and 1 implies a 

nonlinear function that links Z  and X  to I , making equation (10) biased if using a linear 

specification. Logit and probit functions are also incompatible here given their likelihood 

functions are derived by assuming I  is a binary (0,1) variable. Papke and Wooldridge (2008) 

propose a quasi-maximum likelihood procedure that allows for a fractional dependent variable, 

bounded by 0 and 1. We use this method in our first-stage estimation.4 

Second—unlike in Schoengold, Ding, and Headlee (2015) and Yu, Smith, and Sumner 

(2018)—the parameters of interest,  , 1  , and 1 D , are interaction terms. Angrist 

and Pischke (2008) point out that predicted instruments in a second-stage regression where 

similar interaction do not appear in the first stage may result in a violation of the E X,   0 

condition. A similar issue arises because of the nonlinear first stage we employ. Angrist and 

 
4 Table S1 of the Supplementary Material presents results based on a linear first stage. 
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Pischke (2008) recommend first generating predictions from the first stage then using the 

predictions themselves, along with appropriate interactions, as instruments in a one-step 

generalized method of moments (GMM IV regression. We use this multistage implementation of 

the IV here.5 

Finally, to account for slow-changing effects of crop insurance that affect yield risks over 

time (e.g., acreage expansion), we form the instrument by taking the prior 3-year average of the 

predicted values of crop insurance participation Î  from equation (10).6 This specification also 

helps reduce the effect of year-to-year crop insurance participation decisions that may be more 

related to intertemporal adverse selection rather than permanent changes in the risk structure of 

yields. The final equations of interest are 

(11)  ep  ̂
p
  Î  XI   1  ̂ p

  Î  XI   p
 1  p ;  

(12)  ep  ̂
p
  Î 1D    XI   1 ̂ p

  Î 1D   XI   p
 1  p ;  

which estimate the effect of crop insurance on the partial moments of yield and drought 

susceptibility. Î  is the instrumented 3-year average value of the crop insurance participation 

 
5 Alternatively, we could use the heterogeneous treatment method described in Angrist and 

Pischke (2008). Table S4 in the Supplementary Material briefly describes the specification and 

results. 

6 We chose a 3-year average because the first policy year used as an instrument is 1994. Given 

that our first observation was in 1989, the 3-year window allows for 2 years of pre-1994 

observations to be included in the estimation for proper identification of the instrument and the 

results of interest. 
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rate. Estimates from this procedure can be interpreted as the effect of sustained (or average) 

county-level crop insurance participation rate on the partial variance of corn and soybean yields. 

 

Data Description 

Data for this study are drawn from several sources. The Risk Management Agency’s (RMA) 

summary of business provides county-level crop insurance data. The year 1989 was the first year 

available at the time the data was gathered, and we use it as our starting date in this study. The 

National Agricultural Statistics Service (NASS) provides agronomic variables such as corn and 

soybean yields. We use data from 1989–2016 to conform with the RMA data. Futures prices 

were obtained from the Quandl database, and weather variables were obtained from the Oregon 

State PRISM database. Finally, for the proportion of GM corn and soybeans, we used Economic 

Research Service (ERS) county-level data from June Agricultural Survey results (2000–2016) 

and state-level data published in Fernandez-Cornejo and Mcbride (2002) for 1996–1999.7 Prior 

studies have shown that GM crop affect yield risk, so we include them to reduce omitted variable 

bias. 

We also generate several key variables from the data gathered. The primary variable of 

interest is the crop insurance participation rate. We use the definition introduced in Goodwin et 

al. (2004), which is the total actual liabilities insured divided by the total insurable liabilities of 

specific commodities within each county. The variable accounts for variation along the extensive 

and intensive margins of crop insurance participation (use versus nonuse or amount of buy-up 

coverage purchased). 

 
7 Results were similar when estimated with the variable defined at the national level for all years. 
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Actual liabilities insured can be obtained from the RMA summary of business. We use 

the sum of acres under yield or revenue insurance plans for corn and soybeans to calculate actual 

liabilities insured by crop. We exclude acres covered under a group or area plan.8 Total insurable 

liabilities are unobserved. Goodwin et al. (2004) suggest approximating total insurable liabilities 

by taking the product of corn or soybeans acres planted, the average yield in each county in the 

previous 10 years, the mean of the daily settle prices for December corn or November soybean 

futures contracts during the month of February, and the maximum coverage level of 0.85. 

Dividing actual liabilities by total insurable liabilities gives the crop insurance participation rate. 

Our final version of the crop insurance participation rate is found as the average rate of the 3 

years prior to the year in which yields were observed. 

Since NASS planted acres are based on survey estimates and RMA planted acres are 

based on reported acres from insured farmers, there are several cases in which planted acres from 

RMA (in our numerator) is greater than planted acres from NASS (used to calculate our 

denominator). As a result, our calculated crop insurance participation rate is sometimes greater 

than 1. As a fix, we use the maximum crop insurance rate found for a county to adjust all other 

rates within the county.9 The fix ensures that the participation rate is bounded between 0 and 1 

without losing variation from censoring rates above 1. 

 
8 A majority of corn and soybean acres are covered under revenue and yield protection plans. 

Incentive structures under area-based policies are also likely different than those under revenue 

and yield protection plans. 

9 Table S2 in the Supplementary Material presents results with affected counties removed. 
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Other variables generated include several market/economic variables that influence 

farmer agronomic decisions. The soybean-to-corn price ratio is the ratio of the average futures 

price (the average daily closing price between January 1 and March 15) of soybeans and corn 

before crop insurance sign-up. The price of soybeans relative to corn prior to planting can affect 

relative acres of corn and soybeans planting intentions and likely influences other production 

practices going forward. We use expected price as a measure of the information about harvest-

time prices contained in the average futures price prior to crop insurance sign-up. The variable is 

generated as in Yu, Smith, and Sumner (2018) by regressing the average daily closing futures 

price from January to the crop insurance sign-up deadline, state fixed effects, and a year trend on 

harvest time prices. The ratio of sign-up to in-season futures price is the ratio of the futures price 

prior to sign-up to the average futures price during the growing season (we use April 1 to 

September 30) and captures changes in profitability expectations as the growing season 

progresses. 

Generated weather variables include cumulative growing-season precipitation and total 

heating degree days (HDD). As in Roberts, Schlenker, and Eyer (2013) and Tolhurst and Ker 

(2015) we define the heating degree days as the number of days above 29°C. We include a 10-

year rolling average of growing-season precipitation variance to capture differences in weather 

risks across counties. To obtain incidences of drought, we follow Daly, Smith, and Olson (2015) 

and calculate the county-level growing-season vapor pressure deficit (VPD) using daily mean 

and dew point temperatures from the PRISM database.10 Since there is no agreed-upon standard 

 
10 An alternative is the Palmer Drought Severity Index (PDSI); we discuss its performance 

relative to the VPD and present results in the Supplementary Materials and Table S3. 
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for identifying a drought using VPD, we use the 90th percentile of the VPD as our threshold for 

drought. 

After dropping counties with missing observations to produce a balanced panel, the final 

dataset contained 23,296 county-crop-year observations. After forming our 3-year averaged crop 

insurance participation rate, the final-stage dataset contained 20,800 observations. Table 1 

summarizes the variables included in the estimation. 

 

Results and Discussion 

We modify for instrumental variables, a procedure presented in Antle (2010) to estimate 

asymmetric effects of crop insurance on yield variances of corn and soybeans. Crop insurance 

participation rate, defined as a lagged 3-year average participation rate at the county level, is 

used to determine the effect of average crop insurance use on yield variability and drought risk. 

Tables 4–6 present the results. Table 4 reports the results of the ordinary least squares (OLS) and 

fixed effects specifications. Tables 5 and 6 report the fixed effects IV results. Table 6 contains 

the drought interaction results. We use appropriate modifications to allow for the interaction of 

the instrument in each case as described in the empirical section. 

 

Estimated Effect of Included Controls 

Table 2 reports the behavior of the standard deviation of log yields over time. The variance of 

yield for both corn and soybeans initially dipped between 1994 and 1999. For corn, the initial 

decrease was followed by a steady increase in variance, while the variance for soybeans varied 

over time. The overall effect is a decrease in the variance of  corn and soybean yields over 1994–

1999. It is important to point out that several confounding factors make it difficult to assess the 
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impact of crop insurance on variances during this period. As crop insurance has expanded, other 

changes have taken place simultaneously, such as increased adoption of GM crops. Our analysis 

next aims to control for these factors to the extent possible to gain insights into the effect of crop 

insurance on yield variance resulting from land management and potential moral hazard issues. 

We include economic variables in our procedures to capture changes in market conditions 

that can affect yield variability. As they capture multiple simultaneous economic factors, their 

coefficients are difficult to interpret. However, their coefficients generally agree across all 

specifications in both sign and magnitude, with statistical significance, suggesting the variables 

are able to absorb some of the year-to-year market factors that would confound our results. 

Our agronomic variables perform as expected. Results in Tables 5 and 6 agree with the 

literature, showing that GM adoption has decreased overall yield variance, with the decrease 

primarily coming from the lower partial variance (decrease in downside risk). Specifically, a 1-

percentage-point increase in the GM adoption rate decreases downside risk by 1.8%–2.1%. As 

noted earlier, increases in planted acres increases the overall variability of corn and soybean 

yields. Our results indicate that land expansion has a greater effect on the lower partial variance 

than on the upper partial variance. Tests of equality of the two coefficients are rejected at greater 

than the 1% significance level. As previously mentioned, acreage expansion is expected to 

increase yield variance (particularly on the lower tail of the distribution) as the variance of 

management and land quality, among other factors, increases as acres expand. More irrigated 

acres are associated with increasing yields and reduced downside yield risks, although we do not 

recover statistical significance on the lower partial variance. 

The included climate variables also perform as expected. Increasing the number of HDD 

increases downside risk (positive effect on the lower partial variance) indicating the effect of 
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heat stress on corn and soybeans. Growing-season precipitation is associated with a decrease in 

downside risk and has an increasing effect on the upper partial variance, indicating the benefit 

that sufficient rainfall during the growing season has on yields. The 10-year variance of growing-

season rainfall in associated with approximately a 4% increase in downside risk, indicating the 

stress that weather variability can create for crop growing conditions. As expected, droughts are 

associated with a 9.3% increase in the lower partial variance of corn and soybean yield from a 1-

percentage-point increase in drought severity. 

 

Estimated Effect of Crop Insurance 

The naïve (fixed effect only) specification in Table 5 shows a minimal effect of crop insurance 

on yield variance, slightly leaning toward a reducing effect. Glauber (2013) and Table 4 gives 

some context for interpreting this result. Glauber mentions that the highest use of crop insurance 

is in the highest-productivity, lowest-variance areas of the United States (i.e., the Corn Belt, 

mostly situated in the Midwest). The OLS results in Table 4 without including fixed effects 

support this conclusion. We recover a significant negative coefficient for crop insurance on the 

lower partial variance and a moderate increase in the upper partial moment (albeit without 

statistical significance). Adding fixed effects reduces the size of the effect and brings the 

significance level closer to 0 (on the lower partial variance), as expected. However, the location 

concentration effect (and likely other endogenous factors) are not completely eliminated. 

To recover the effects of interest, our analysis therefore uses IVs, which use exogenous 

variation based on policy changes that affect demand for crop insurance. Incentives for the 

policy changes have largely been to reduce reliance on ad hoc payments and encourage farmers 

to use crop insurance as their primary means of risk management. The first IV is based on the 
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timing of the passage of policies that have affected crop insurance use through multiple channels. 

The second IV is based on changes to the subsidy rate of crop insurance, and so it exploits 

exogenous changes to the cost of acquiring crop insurance. Finally, we compare the results 

produced from both IVs to gain some insight into their performance. 

Tables 5 and 6 show that both IVs have very similar coefficients for the effect of crop 

insurance on yield variance. Since the partial variance is log-transformed and the crop insurance 

participation rate is bounded between 0 and 1, the coefficients indicate percentage changes if the 

crop insurance participation rate rose to 100%. Interpreting the results based on a 1-percentage-

point change in crop insurance is more practically meaningful. Both IV specifications show that 

a 1-percentage-point increase in the 3-year average county-level crop insurance participation rate 

is associated with a 5.2%–5.5% increase in the lower partial variance of yields at the county 

level. In output terms, this translates to an additional 2.2 bu/acre on average for corn and 0.8 

bu/acre for soybeans in a year when yield losses occur. We also find an increase in the upper 

partial variance of 3.7%–4.2% due to a 1-percentage-point increase in the crop insurance 

participation rate. This translates to an additional 1.7 bu/acre on average for corn and 0.6 bu/acre 

for soybeans in years of good yields. Overall, Table 5 shows that yield variance under crop 

insurance has increased to a small extent with a slight increase in skew toward the left tail of the 

crop yield distribution. Work from Sandmo (1971) suggests that this is a reasonable expectation. 

As farmers have gained access to crop insurance, they have been able to take on more risk; 

perhaps as a result, yields have seen significant increases over the last few years. New 

technologies, access to financing (Cornaggia, 2013), and even increased use of chemical inputs 

(Claassen, Langpap, and Wu, 2017) have meant increased productivity, while increasing risks 

(and, to a slightly greater extent, downside risk) to some degree (Antle, 2010). 
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Table 6 presents the results after we include an interaction that represents the occurrence 

of a severe drought (a 10% probability event). The results are consistent with those in Table 5. 

An increase in crop insurance participation rates increases the drought susceptibility of corn and 

soybean yields. Specifically, a 1-percentage-point increase in the 3-year average use of county-

level crop insurance participation rate accounts for a 1.2% increase or an additional 0.3 bu/acre 

for corn and 0.1 bu/acre for soybeans of additional yield losses during a drought. Table 7 

presents the over-identifying and weak instrument tests. 

The finding of an increased drought effect links crop insurance to an effect found in 

Lobell et al. (2014) of increased crop susceptibility to drought. The increased drought 

susceptibility combined with controlling for planted acres suggests that acreage expansion alone 

is insufficient to explain the overall increase in yield risk that we find and that factors related to 

soil moisture retention potentially play a role as well. Several factors could cause changes in 

average moisture retention of farmed land. Acreage expansion under crop insurance has likely 

drawn in more low-quality land than the scenario in which crop insurance is absent. Table 8 

provides some evidence that suggests that acreage expansion under crop insurance is associated 

with lower average land quality. The National Crop Productivity Index (NCCPI) from the 

National Resources Conservation Service (NRCS) is a land quality measure that accounts for soil 

water-holding capacity in addition to other characteristics related to yield performance. Mean 

NCCPI across the entire sample is 0.62 (on a scale of 0.00 to 1.00). Table 8 presents the results 

of OLS regression analysis that suggests that a 1% increase in crop acreage under crop insurance 

is associated with a 0.4-percentage-point decrease in the NCCPI. The acreage channel was likely 

less important prior to the 1996 Freedom to Farm Act but is a likely an important factor in later 

periods of our sample. Other factors likely contribute as well. 
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Lobell et al. (2014) point out that increases in planting density could also be linked to our 

finding of an increase in drought sensitivity. The downside protection provided by crop 

insurance may encourage higher planting density since increasing the planting density can 

increase yields in good growing conditions but can also increase the risk of greater loss during 

dryer years. Crop insurance coverage reduces the cost of such a risk. The results in Schoengold, 

Ding, and Headlee (2015) also hint that time costs might also be important. Payments from crop 

insurance were linked to increased use of no-till compared to conservation till, despite 

conservation till being a lower cost investment (Epplin et al., 2005; Schoengold, Ding, and 

Headlee, 2015). However, no-till reduces time costs compared to conservation till. Therefore, 

time-saving aspects of crop insurance may also substitute for more time-consuming practices on 

the farm that reduce risks over time or maintain soil water holding capacity. Investigating the 

relative contributions of these various factors is outside the scope of this paper. 

 

Conclusion 

In this study, we investigate the relationship between crop insurance and its asymmetric impacts 

on corn and soybean yields. Crop insurance has become an integral component of the U.S. farm 

economy, and significant research has been conducted to ensure its optimal performance. Crop 

insurance has certainly served its function of maintaining farm incomes (Key, Prager, and Burns, 

2018). However, some understanding of potential long-term impacts is also necessary to ensure 

the efficiency of the program and U.S. agriculture in general. We find evidence of a relationship 

between average crop insurance participation rates and an increase in downside risk for corn and 

soybean yields. Across two IV specifications, we find an approximately 5.2%–5.5% increase in 

the lower partial variance of yield from a 1-percentage-point increase in the average county-level 
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crop insurance participation rate and a simultaneous increase of approximately 3.7%–4.2% in the 

upper partial variance. Similarly, we find that drought susceptibility increases by approximately 

1.2% when the average crop insurance participation rate increases by 1 percentage point, linking 

crop insurance, at least partially, to a finding in Lobell et al. (2014) of increased drought 

susceptibility of yields. 

Our findings translate to an average increase of 1.6 bu/acre for corn and 0.6 bu/acre for 

soybeans in yield upside in favorable years and average increase of 2.2 bu/acre and 0.8 bu/acre 

of additional yield losses for corn and soybeans, respectively, during unfavorable years. This 

increases to an additional 0.3 bu/acre for corn and 0.1 bu/acre for soybean in severe drought 

years. The relative sizes of changes suggest that crop insurance could potentially reduce farm 

income variability (as found in Key, Prager, and Burns, 2018), despite changes to yield variance. 

The combination of crop insurance payments during down years and the ability to smooth 

income across favorable and unfavorable years would help maintain farm income stability. Our 

results also suggest that crop insurance has allowed farmers to take on additional yield risk, 

likely contributing to the increased productivity and yield expansion observed over the past 

several years. 

We used the 90th percentile of the distribution of VPD to represent drought. Therefore, 

our results imply that increasing average coverage level from CAT to 70% coverage under a 

yield guarantee can increase underwriting costs by approximately $3.0 billion for corn and 

soybeans combined over a 10-year period. Revenue coverage costs likely increase by a smaller 

amount given the offsetting price effect. It is uncertain how such yield losses would affect 

farmers, as some may benefit in drought years if prices increase to the point that high revenues 

are achieved. This gain though, is unlikely to be evenly distributed across all farms, particularly 
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where yield losses are especially severe. Nevertheless, increased drought susceptibility comes 

with additional costs, including increased price volatility, which can affect nonadopters of crop 

insurance and firms at higher vertical distances in the supply chain. Price variations are likely to 

spill over to other related markets as well. 

Further research is needed to understand the sources of increased downside risk. Several 

factors likely contribute to this effect with different long-run implications. To the extent that 

increases in planting densities play a role, optimal planting densities can be investigated such 

that yield gains can still be realized while minimizing the cost of drought losses. Also important 

is understanding the relationship between conservation practices and crop insurance and the 

extent to which relative time/cost factors are involved. Premium rates may be adjusted to reflect 

the long-run benefits conferred on farmers adopting such practices. Recent interest in 

conservation practices show recognition of the role of such practices in reducing externalities 

from farming and maintaining long-run productive capacity. 

Long-run implications differ if planting density and new, lower-quality land brought into 

agriculture are sufficient to explain our results compared to the case of significant changes to 

land already under production. The latter suggests that our effect increases in magnitude over 

time. Nevertheless, as droughts are one of the most significant sources of losses in U.S. 

agriculture and the possibility exists of increased exposure to drought as a result of climate 

change, attention is still needed to safeguard yields and the cost of providing crop insurance 

during drought conditions. Future research will continue to build our understanding of the role 

that crop insurance can play in potential solutions. 
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Table 1. Summary of Included Variables 
 

 
Notes: Standard deviations are in parentheses. All prices deflated to year 2000 dollars. 

 1989–1993 2000–2008 2010–2016 Overall 
Insurance  0.231 0.632 0.803 0.551 
Participation Rate (0.144) (0.170) (0.138) (0.264) 
     
Market controls     
Expected price     
Corn 2.052 2.608 3.022 2.676 
 (0.193) (0.681) (0.514) (0.618) 
Soybeans 5.360 5.701 6.639 6.143 
 (0.544) (1.645) (1.043) (1.298) 
Soybean/corn futures price ratio 2.440 2.201 2.306 2.302 

(0.139) (0.215) (0.079) (0.175) 
Sign-up/in-season futures price ratio     
Corn 0.990 1.012 0.994 1.003 
 (0.058) (0.087) (0.059) (0.071) 
Soybeans 1.003 1.034 1.040 1.023 
 (0.042) (0.064) (0.070) (0.064) 
     
Agronomic controls     
GM adoption (%)     
Corn 0.000 47.678 89.312 42.546 
 (0.000) (24.012) (5.316) (37.343) 
Soybeans 0.000 80.351 93.579 56.923 
 (0.000) (12.917) (3.065) (39.642) 
Irrigated acres (%)     
Corn 0.071 0.063 0.083 0.070 
 (0.213) (0.190) (0.192) (0.196) 
Soybeans 0.043 0.062 0.087 0.062 
 (0.138) (0.185) (0.206) (0.178) 
Planted acres     
Corn 95,476 102,402 113,384 103,027 
 (60,087) (62,880) (67,353) (63,446) 
Soybeans 81,526 98,483 101,196 95,195 
 (51,553) (55,143) (55,358) (54,797) 
     
Weather and climate controls     
In-season precipitation (mm) 935.738 917.484 963.786 926.400 

(303.171) (270.393) (280.133) (277.473) 
Log 10-year rain variation 9.420 8.837 9.092 8.974 

(2.161) (2.219) (2.319) (2.257) 
Heating degree days 1.723 3.104 4.990 3.182 
 (5.265) (8.822) (14.303) (10.017) 
Drought years (%) 0.066 0.110 0.148 0.097 
 (0.248) (0.313) (0.355) (0.296) 
     
N 4,160 7,488 5,824 23,296 
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Table 2. Summary of Average Yield Variance over Time 
 
 1989–1993 1994–1999 2000–2005 2010–2016 Overall 
Corn variance 0.298 0.213 0.246 0.248 0.248 
 (0.066) (0.020) (0.028) (0.047) (0.049) 
      
Soybean variance 0.319 0.287 0.299 0.285 0.295 
 (0.034) (0.029) (0.022) (0.017) (0.028) 
      
Combined variance 0.309 0.250 0.272 0.267 0.271 
 (0.049) (0.022) (0.022) (0.027) (0.035) 
      
N 4,160 5,824 6,656 5,824 23,296 

 
Notes: Standard deviations in parentheses. Values expressed in standard deviations of log yield, 
which can be interpreted as approximately equal to average percent deviation of yield. 
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Table 3. First-Stage Regressions (N = 23,296) 
Policy Trend Instrument Subsidy Rate Instrument 

 Crop Insurance 
Participation 

 Crop Insurance 
Participation 

Pre-1994 -0.194*** Subsidy Rate 65% 2.755*** 
 (0.021)  (0.173) 
2000–2007 0.146*** Subsidy Rate 75% -0.689*** 
 (0.019)  (0.112) 
2008–2014 0.204***   
 (0.025)   
Post-2014 0.093**   
 (0.031)   
Log expected price -0.289*** Log expected price -0.331*** 
 (0.033)  (0.025) 
Soybean/corn price ratio -0.097** Soybean/corn price ratio 0.019 

(0.031) (0.031) 
Sign-up/in-season 
futures price ratio 

0.023 Sign-up/in-season 
futures price ratio 

0.304*** 
(0.074) (0.074) 

GM adoption (%) 0.750*** GM adoption (%) 0.562*** 
 (0.038)  (0.034) 
Log planted acres 0.205*** Log planted acres 0.208*** 

(0.007) (0.007) 
Proportion irrigated land -0.432*** Proportion irrigated land -0.427*** 

(0.033) (0.033) 
Growing-season 
precipitation 

-0.626*** Growing-season 
precipitation 

-0.637*** 
(0.018) (0.018) 

10-year rain variation 0.570*** 10-year rain variation 0.650*** 
(0.111) (0.111) 

Heating degree days -0.005*** Heating degree days -0.004*** 
(0.001)  (0.001) 

Drought -0.226*** Drought -0.223*** 
 (0.022)  (0.022) 
County-level trends  County-level trends  

Corn 0.076*** Corn 0.078*** 
 (0.003)  (0.002) 
Soybeans 0.076*** Soybeans 0.078*** 

 (0.003)  (0.002) 
    
Constant -150.077*** Constant -155.615*** 
 (5.880)  (4.452) 
    
Pseudo-R2 0.158 Pseudo-R2 0.159 

Notes: Single, double, and triple asterisks (*, **, ***) indicate significance at the 10%, 5%, and 
1% level. Standard errors are in parentheses and are clustered at the agricultural district level. 
Model also includes county-crop-specific fixed effects. Policy trend instruments: Dummies that 
are 1 within the specified periods and 0 otherwise. Soybean/corn price ratio is ratio of futures 
price between January 1 and March 15. Sign-up to in-season futures price ratio is the ratio of the 
average February futures price to the average futures price from April 1 to September 1. 
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Table 4. Asymmetric Effect of 3-Year Crop Insurance Participation Rate on Yields (N = 20,800) 
 

 OLS Fixed Effects 
 Upper Partial 

Variance 
Lower Partial 

Variance 
Upper Partial 

Variance 
Lower Partial 

Variance 
Insurance  0.248 -1.204** -0.036 -0.484 
Participation (0.472) (0.523) (0.308) (0.386) 
     
Market controls     

Log expected price -0.430*** -0.648*** -0.524*** -0.605*** 
 (0.143) (0.182) (0.137) (0.147) 
Soybean/corn price ratio 0.116 0.897*** 0.597*** -0.117 

(0.153) (0.265) (0.111) (0.219) 
Sign-up/in-season futures 
price ratio 

-0.099 -0.054 0.083 -0.470 
(0.393) (0.433) (0.371) (0.368) 

     
Agronomic controls     

GM adoption (%) -0.032 0.617* 0.297 -0.257 
 (0.240) (0.314) (0.186) (0.288) 
Log planted acres -0.507*** -0.019 0.297** 0.786*** 

(0.100) (0.117) (0.136) (0.106) 
Proportion irrigated land 0.352 -1.210*** 0.621 -0.913** 

(0.376) (0.450) (0.392) (0.366) 
     
Weather and climate controls 

Growing-season 
precipitation 

0.405* -0.553* 0.453** -0.164 
(0.213) (0.292) (0.192) (0.194) 

10-year rain variation 0.034* 0.025 -0.003 0.077*** 
(0.020) (0.033) (0.013) (0.026) 

Heating degree days -0.036*** 0.029*** -0.029** 0.023*** 
(0.011) (0.006) (0.011) (0.004) 

Drought 0.483** 0.976*** 0.788 0.687** 
 (0.219) (0.199) (0.497) (0.267) 
County-level trends     

Corn -0.010 -0.010 -0.010 -0.010 
 (0.014) (0.014) (0.010) (0.010) 
Soybeans -0.009 -0.009 -0.016 -0.016 

 (0.014) (0.014) (0.010) (0.010) 
     
Constant 18.035 18.035 16.034 16.034 
 (28.033) (28.033) (19.255) (19.255) 

 
Notes: Single, double, and triple asterisks (*, **, ***) indicate significance at the 10%, 5%, and 
1% level. Standard errors are in parentheses and clustered at the agricultural district level. 
Estimation weighted by the inverse log variance of yields to correct for heteroskedasticity. 
Variance of corn and soybean yields estimated jointly. The difference in number of observations 
between Tables 1–3 and Tables 4–6 is from averaging over the prior 3 years, meaning our first 
observation is in 1992. The average crop insurance participation rate for 1992 is the average rate 
for the years 1991, 1990, and 1989. Model includes county-crop-specific fixed effects. Sign-up 
to in-season futures price ratio is the ratio of the average February futures price to the average 
futures price from April 1 to September 1.  
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Table 5. Asymmetric Effect of 3-Year Crop Insurance Participation Rate on Yields (N = 20,800) 
 
 FE-IV Policy Trends FE-IV Subsidy Rates 
 Upper Partial 

Variance 
Lower Partial 

Variance 
Upper Partial 

Variance 
Lower Partial 

Variance 
Insurance  3.689*** 5.495*** 4.224*** 5.154*** 
Participation (1.095) (1.677) (1.038) (1.570) 
     
Market controls     

Log expected price -0.335** -0.249 -0.309** -0.275* 
(0.138) (0.168) (0.137) (0.161) 

Soybean/corn price 
ratio 

0.675*** -0.196 0.660*** -0.139 
(0.108) (0.236) (0.108) (0.235) 

Sign-up/ in- season 
futures price ratio 

0.441 -0.403 0.508 -0.388 
(0.369) (0.374) (0.372) (0.374) 

     
Agronomic controls     

GM adoption (%) -0.312 -2.051*** -0.524** -1.772*** 
 (0.273) (0.564) (0.266) (0.530) 
Log planted acres 0.465*** 0.796*** 0.447*** 0.816*** 

(0.164) (0.136) (0.164) (0.132) 
Proportion irrigated 
land 

0.785* -0.571 0.819* -0.588 
(0.476) (0.413) (0.490) (0.417) 

     
Weather and climate controls  

Growing-season 
precipitation 

0.324 -0.002 0.328 -0.043 
(0.214) (0.195) (0.217) (0.191) 

10-year rain variation -0.019* 0.044*** -0.019* 0.043*** 
(0.011) (0.014) (0.011) (0.014) 

Heating degree days -0.020* 0.025*** -0.019* 0.025*** 
(0.011) (0.004) (0.011) (0.004) 

Drought 0.054 0.936*** 0.053 0.927*** 
 (0.118) (0.157) (0.119) (0.156) 
County-level trends     

Corn -0.090*** -0.090*** -0.095*** -0.095*** 
 (0.025) (0.025) (0.024) (0.024) 
Soybeans -0.096*** -0.096*** -0.101*** -0.101*** 

 (0.026) (0.026) (0.025) (0.025) 
Notes: Single, double, and triple asterisks (*, **, ***) indicate significance at the 10%, 5%, and 
1% level. Standard errors are in parentheses and clustered at the agricultural district level. 
Estimation weighted by the inverse log variance of yields to correct for heteroskedasticity. 
Variance of corn and soybean yields estimated jointly. The difference in number of observations 
between Tables 1–3 and Tables 4–6 is from averaging over the prior 3 years, meaning our first 
observation is in 1992. The average crop insurance participation rate for 1992 is the average rate 
for the years 1991, 1990, and 1989. Model includes county-crop-specific fixed effects. Sign-up 
to in-season futures price ratio is the ratio of the average February futures price to the average 
futures price from April 1 to September 1.  
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Table 6. Effect of Crop Insurance Participation Rates on Partial Moments of Yield (N = 20,800) 
 FE-IV: Policy Trends FE-IV: Subsidy Rates 
 Upper Partial 

Variance 
Lower Partial 

Variance 
Upper Partial 

Variance 
Lower Partial 

Variance 
Insurance  3.656*** 5.035*** 4.262*** 4.825*** 
Participation (1.087) (1.594) (1.046) (1.526) 
     
Crop insurance  drought  0.140 1.201* 0.300 1.226* 

(0.967) (0.685) (0.970) (0.674) 
     
Market controls     

Log expected price -0.345** -0.275* -0.316** -0.293* 
 (0.138) (0.164) (0.138) (0.159) 
Soybean/corn price ratio 0.680*** -0.180 0.667*** -0.125 

(0.107) (0.233) (0.108) (0.233) 
Sign-up/in-season 
futures price ratio 

0.446 -0.329 0.522 -0.309 
(0.369) (0.371) (0.373) (0.373) 

     
Agronomic controls     

GM adoption (%) -0.311 -1.874*** -0.533** -1.636*** 
 (0.273) (0.536) (0.267) (0.513) 
Log planted acres 0.460*** 0.800*** 0.445*** 0.820*** 
 (0.160) (0.133) (0.161) (0.130) 
Proportion irrigated land 0.805* -0.552 0.849* -0.558 

(0.468) (0.411) (0.484) (0.415) 
     
Weather and climate controls   

Growing-season 
precipitation 

0.335 0.012 0.337 -0.027 
(0.213) (0.192) (0.216) (0.188) 

10-year rain variation -0.019* 0.042*** -0.019* 0.041*** 
(0.011) (0.013) (0.011) (0.013) 

Heating degree days -0.020* 0.026*** -0.019* 0.025*** 
(0.012) (0.004) (0.012) (0.004) 

Drought -0.032 0.283 -0.136 0.261 
 (0.642) (0.388) (0.643) (0.381) 
County-level trends     

Corn -0.089*** -0.089*** -0.096*** -0.096*** 
 (0.025) (0.025) (0.024) (0.024) 
Soybeans -0.095*** -0.095*** -0.102*** -0.102*** 

 (0.026) (0.026) (0.025) (0.025) 

Notes: Single, double, and triple asterisks (*, **, ***) indicate significance at the 10%, 5%, and 
1% level. Standard errors are in parentheses and clustered at the agricultural district level. 
Estimation weighted by the inverse log variance of yields to correct for heteroskedasticity. 
Variance of corn and soybean yields estimated jointly. The difference in number of observations 
between Tables 1–3 and Tables 4–6 is from averaging over the prior 3 years, meaning our first 
observation is in 1992. The average crop insurance participation rate for 1992 is the average rate 
for the years 1991, 1990, and 1989. Model includes county-crop-specific fixed effects. Sign-up 
to in-season futures price ratio is the ratio of the average February futures price to the average 
futures price from April 1 to September 1.  
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Table 7. Weak Instrument/Overidentification Tests for Subsidy and Policy Instruments 
 
 

3-Year Base Estimation  
3-Year Drought 

Interaction Estimation  
 

Policy IV 
Subsidy 

Rate Policy IV 
Subsidy 

Rate 
Cragg–Donald weak instrument test 276.770 354.327 175.502 216.987 

     

Stock and Yogo 10% maximal IV 13.43 13.43 13.43 13.43 
     
Sargan overidentification test 0.416 0.524 0.612 0.779 
 (0.519) (0.469) (0.434) (0.377) 

 
Notes: The Cragg–Donald test indicates that the instruments are highly correlated with the 
endogenous variable, suggesting strong instruments. p-value in parentheses for the 
overidentification tests. A p-value greater than 0.05 indicates failure to reject the null that the 
overidentification restrictions are valid. 
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Table 8. OLS Estimation of the Effect of Agricultural Factors on Average Land Quality (N = 
21,267) 
 
 Crop Insurance Use and Land 

Quality (NCCPI) 
Crop insurance participation 0.600*** 
 (0.059) 
Planted acres  crop insurance -0.040*** 
 (0.005) 
Planted acres  year -0.000** 
 (0.000) 
Planted acres 0.215*** 
 (0.062) 
Log expected price 0.037*** 
 (0.007) 
Commodity price -0.015*** 
 (0.006) 
GM adoption (%) -0.087*** 
 (0.007) 
10-year rain variation 0.006*** 
 (0.001) 
Proportion irrigated land -0.270*** 
 (0.005) 
Constant -0.489*** 
 (0.034) 
  
Adjusted R2 0.257 

 
Notes: Single, double, and triple asterisks (*, **, ***) indicate significance at the 10%, 5%, and 
1% level. Standard errors are in parentheses. As the NCCPI is a static measure, we used an OLS 
procedure without incorporating fixed effects. Coefficients therefore represent the average 
change in land quality associated with the listed variable. GM technology and irrigation are 
associated with lower quality land since they increase ability to produce on these land types. 
More-variable rainfall is associated with higher quality land, as lower quality land is riskier 
under these conditions. As pointed out in Glauber (2013), crop insurance adoption is highest on 
land of higher quality. However, acreage growth under crop insurance is associated with lower 
average quality of land farmed. Acreage expansion alone has the same effect (interaction of 
acreage and year), however the effect is smaller than under crop insurance. Expected price 
captures preseason incentives to shift acres while the annual market price captures multiple 
realized market conditions. 


