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a b s t r a c t

Several papers have explored the effect of tighter environmental standards on environmental innovation.
While mandatory regulation remains the central tenet of US environmental policy, the regulatory
landscape has changed since the early 1990s with the increased recourse by federal and state agencies to
corporate environmentalism–voluntary pollution prevention (P2) by firms–to achieve environmental
improvements. We therefore estimate the effects of voluntary P2 activities on the patenting of envi-
ronmental technologies by a sample of manufacturing firms. With our panel data of 352 firms over the
1991e2000 period, we adopt an instrumental variable Poisson framework to account for the count
nature of patents and the endogeneity of the P2 adoption decision. Our results indicate that the adoption
of voluntary P2 activities in the manufacturing sector has led to a statistically and economically signif-
icant increase in the number of environmental patents, suggesting that corporate environmentalism can
act as a catalyst for investments in cleaner technologies. Our findings are internationally relevant given
the increasing ubiquity of corporate environmentalism in both developed and developing economies.

© 2015 Elsevier Ltd. All rights reserved.
1. Introduction

US firms devote considerable financial resources to the devel-
opment of cleaner production technologies. For example, statistics
in Carri�on-Flores and Innes (2010) indicate that on average be-
tween 927 and 3150 patents for environmentally friendly tech-
nologies were granted every year between 1989 and 2002 to firms
in the manufacturing sector.1 Such figures explain in part the
debate in the environmental economics literature regarding the
determinants of environmental innovation (see e.g., Jaffe et al.,
2002 for a survey). An important facet of this ongoing debate
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concerns the relationship between environmental regulation and
innovation. Porter and van der Linde (1995) contend that, in a
dynamically competitive environment, stricter environmental
standards may incentivize firms to invest in cleaner technologies
that reduce their compliance costs, leading to a “winewin” situa-
tion where both pollution levels and firms' operating costs are
abated. A number of papers have sought to test the empirical val-
idity of what has become known as the Porter hypothesis (see
Horbach, 2008 for a survey). Many of these studies find a causal
effect of stricter regulations on environmental innovation, in
congruence with the Porter hypothesis (e.g., Brunnermeier and
Cohen, 2003; Carri�on-Flores and Innes, 2010).

However, a new regulatory paradigm has emerged in recent
years with the increasing reliance by federal and state regulatory
authorities on corporate environmentalism, that is on firm-
initiated or government-sponsored voluntary P2 programs
designed to achieve environmental improvements. Firms partici-
pating in these programs make a voluntary pledge to exceed
emission standards set forth by environmental laws and/or reduce
unregulated pollutants.

The 1990 Pollution Prevention Act (PPA) established a federal
policy of incentivizing firms to voluntarily adopt source reduction
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activities, also referred to as pollution prevention (P2) practices.2

Shortly after the passage of the PPA, the Environmental Protec-
tion Agency (EPA) created its first voluntary program, the 33/50, to
reduce emissions of 17 highly toxic chemicals; over 1200 firms self-
selected into the program. The apparent success of the 33/50 pro-
gram and a growing awareness among firms and the public of the
effects of climate change paved the way for several more voluntary
P2 programs such as Energy Star which seeks to decrease carbon
dioxide emissions, and the National Environmental Performance
Track designed to encourage environmentally proactive firms
through rewards and public recognition. From 1996 to 2005, the
number of EPA-sponsored P2 programs increased from 24 to 87
(Khanna and Brouhle, 2009).

In addition to government-sponsored voluntary P2 programs,
many firms have shifted away from a regulatory driven approach to
a more proactive and beyond-compliance strategy towards envi-
ronmental management.3 For example, in the wake of a tragic gas
leak that killed thousands in Bhopal India, the chemical
manufacturing industry responded by creating, on its own volition,
the Responsible Care program to enhance environmental perfor-
mance and occupational safety above and beyond member firms'
legal obligations. The apparent success of Responsible Care led the
BP Oil Spill Commission to recommend the creation of a like-
minded program for the oil and gas industry (Gamper-Rabindran
and Finger, 2013) in the aftermath of the Deepwater Horizon oil
spill in the Gulf of Mexico in 2010. Other notable examples of firm
led initiatives to rein in waste generation include the multinational
conglomerate 3M's Pollution Prevention Pays (3P) program and
Chevron's Save Money and Reduce Toxins (SMART) program.4

In developing and transition economies with lax environmental
enforcement agencies, many businesses have embraced corporate
environmentalism in order to reassure downstream buyers about
their commitment to environmental quality or as a condition of
doing business with them. This is more likely to be the case for
export-oriented businesses in developing economies who act as
suppliers to larger multinational companies that cater to clients in
richer economies. Anecdotal evidence indicates that many sup-
pliers in developing economies have faced pressure from their
2 The PPA defines a source reduction practice as “any practice which (i) reduces
the amount of any hazardous substance, pollutant, or contaminant entering any
waste stream or otherwise released into the environment (including fugitive
emissions) prior to recycling, treatment, or disposal; and (ii) reduces the hazards to
public health and the environment associated with the release of such substances,
pollutants, or contaminants.”

3 Businesses and industries have taken unilateral steps to proactively improve
their environmental management by adopting the International Organization for
Standardization (ISO)'s 14001 standards and related environmental management
systems–such as Total Quality Environmental Management (TQEM)–that enable
them to identify the environmental impacts of their products and internalize those
impacts in their operational decisions (Sam et al., 2009).

4 These slogans illustrate that private firms' investments in cleaner technologies
are also motivated by shareholder wealth maximization, which manifests itself via
a number of channels. Specifically, cleaner technologies have the potential to i)
reduce operating expenses and lower the number of costly inspections and
enforcement actions (Maxwell and Decker, 2006), ii) help preempt costly boycott
campaigns (Innes and Sam, 2008), iii) enhance the appeal of a firm's products
among environmentally conscious consumers (Khanna and Damon, 1999); iv) spur
tighter standards that raise rivals' costs (Salop and Scheffman, 1983; Innes and Bial,
2002), iv) forestall negative public reaction in media and financial markets
(Hamilton, 1995) by reducing the frequency of environmental infractions and the
volume of toxic chemicals produced. Eccles et al. (2014) classify firms based on their
adoption of sustainability policies by 1993 and track their financial performance
over an 18 year period. They find that high sustainability firms (those that volun-
tarily adopted sustainability practices) outperformed otherwise similar low sus-
tainability firms in terms of stock market performance and accounting rates of
returns (return on equity and return on assets). Sharma and Vredenburg (1998) also
find that environmental proactiveness was associated with a number of competi-
tive benefits such as lower operating costs and improved corporate reputation.
customers in developed countries to seek ISO certification (Prakash
and Potoski 2012). China, for example, has the highest number of
ISO 14001-certified businesses in the world and empirical evidence
in McGuire (2014) indicates that ISO certification has improved
environmental compliance for a sample of Chinese manufacturing
firms.

Despite the increased recourse to these voluntary environ-
mental programs in developed, transition, and developing econo-
mies, surprisingly little has been done to ascertain their effects on
environmental innovation. The main objective of our study is to
explore whether the voluntary adoption of P2 activities by regu-
lated firms impels or impedes their investments in environmental
technologies.5 To our knowledge, only few papers (e.g., Johnstone
et al. (2010), Brouhle et al. (2013), Carri�on-Flores et al. (2013))
have studied the link between P2 programs and environmental
innovation For example, using country-level data, Johnstone et al.
(2010) find no effect of the presence of “voluntary environmental
policy”–captured by a dummy variable—on environmental pat-
enting activity. Brouhle et al. (2013) examine the effect of partici-
pation in the Climate Wise program on firm-level environmental
innovation, finding that Climate Wise participation enhanced the
technical capacity of less R&D-intensive firms, which in turn led to
a statistically significant increase in the number of environmental
patents. Specifically, they find that a participant firm with median
R&D intensity had 18% more environmental patents as a result of
participation in the Climate Wise program. Carri�on-Flores et al.
(2013) also evaluate the effect of P2 program participation on
environmental innovation at the industry level. They find that
participation in the 33/50 program led to increased environmental
patenting in the short-run (between 1994 and 1999) but had a
negative effect in the long-run (between 2000 and 2004). Per their
results, a 10% increase in the industry-level 33/50 adoption ratewas
estimated to increase environmental patents by 27.5% between
1996 and 1999, and reduce said patents by 46.2% in years
2000e2004.

Both the 33/50 (Carri�on-Flores et al., 2013) and Climate Wise
(Brouhle et al., 2013) were designed with short-term pollution
reduction objectives for a narrow target of emissions. For example,
the 33/50 program sought to abate emissions of 17 toxic chemicals
by 33% by 1992 and by 50% by 1995 relative to 1988 baseline levels
(Khanna and Damon, 1999). Likewise, Climate Wise was in effect
from 1993 to 2000 and focused on the nonutility manufacturing
sector to achieve reductions in greenhouse gas (GHG) emissions.
Unlike these two narrow “short-term” programs, the P2 program–

spawned by the PPA and is our focus–is far broader in scope (targets
all 683 chemicals and chemical categories in the Toxics Release
Inventory (TRI)) and does not have any explicit time-sensitive
emission reduction goals. It consists of a diverse set of 43 P2
practices ranging from good operating practices (e.g., improved
maintenance scheduling, recordkeeping), to improved procedures,
to raw material and process modification (e.g., modified equip-
ment, layout, or piping). Between 1991 and 1995, over half of all TRI
facilities had adopted at least one P2 practice (Sam, 2010); in the
same period, only 12% of eligible firms had joined the 33/50
program.

Moreover, unlike Carri�on-Flores et al. (2013), we use firm-level
data instead of aggregate industry-level data. We do so for two
main reasons. First, both decisions to invest in patentable envi-
ronmental research as well as adoption of P2 activities are made by
firms. Second, aggregation at the industry level may serve to
attenuate the real impact of voluntary P2 activities on
5 By environmental innovation, we are referring to successful patents of envi-
ronmental technologies.



6 It is noted however that not all empirical studies have found the same effect.
For example, Vidovic and Khanna (2007) find that this negative impact of the
program on targeted releases vanishes if prior reductions in pollution achieved
before the start of the program and time fixed effects are taken into account.
Examining impacts by industry and media, Gamper-Rabindran (2006) comes to a
more mixed conclusion, with some industries and media experiencing significant
release reductions due to the 33/50 program effect, and others not.
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environmental innovation when there is significant heterogeneity
in P2 adoption within an industry.

Our results indicate that the adoption of P2 practices leads to a
direct and significant boost in environmental patents at the firm-
level. We also find that stricter environmental standards stimu-
late environmental innovation, reaffirming the critical role of reg-
ulatory compliance in spurring innovation as evidenced in previous
work by Brunnermeier and Cohen (2003), Carri�on-Flores and Innes
(2010), and Jaffe and Palmer (1997). The remainder of the paper is
organized as follows. Section 2 provides a brief literature review on
environmental regulation and innovation and presents the main
hypothesis tested; Section 3 presents the data and econometrics;
Section 4 discusses the results; Section 5 concludes.

2. Background and main hypothesis

2.1. Background

Several studies, mostly theoretical, have sought to analyze the
relationship between the environmental regulation and innova-
tion. Theoretical papers by Downing andWhite (1986), Fischer et al.
(2003), Jung et al. (1996), Malueg (1989), and Milliman and Prince
(1989) analyze the economic incentives provided by different pol-
icy instruments (taxes, subsidies, permits, and emission standards)
toward the development and adoption of greener production
technologies (see e.g., Requate (2005) for a review of findings).
Porter and van der Linde (1995) argue that tougher environmental
regulation can act as a spur to environmental innovation that
lowers emissions and compliance costs. They offer anecdotal evi-
dence in support of their hypothesis which has become famously
known as the Porter hypothesis.

A few empirical papers explore the effect of regulatory strin-
gency on environmental innovation. For example, using a panel
data of a sample of USmanufacturing industries, Brunnermeier and
Cohen (2003) find that pollution control costs are positively asso-
ciated with the number of environmental patents after controlling
for several covariates. Per their Poisson results, a one percent in-
crease in pollution abatement costs leads to a small (0.05 percent)
increase in environmental patents. In the same realm, Jaffe and
Palmer (1997) find that lagged pollution abatement costs are
positively associated with research and development (R&D) ex-
penditures; however they do not find such association between
pollution control costs and patents. Carri�on-Flores and Innes (2010)
argue that causality between environmental innovation and regu-
latory stringency runs in both directions; that is while environ-
mental policy could trigger the development of clean production
technologies, environmental innovation could in turn spur a
tightening of environmental standards. If so, failure to account for
the bi-directional links biases econometric results. Using emissions
of regulated TRI pollutants and environmental patents as measure
of innovation, they find evidence in support of the hypothesized bi-
directional links. In terms of the magnitude of the induced inno-
vation, they find that a 1% permanent tightening of emission
standards spurs a 0.43% long-run increase in environmental
patents.

These studies do not, however, estimate the separate effects of
voluntary P2 programs which have become an integral part of US
environmental policy. In 1990, the PPA was passed to promote
widespread adoption by businesses of voluntary P2 activities. One
year later, the EPA created its most studied P2 program, the 33/50,
which sought the cooperation of regulated firms to achieve release
reductions for 17 toxic chemicals by a third by 1992 and by 50
percent by 1995, relative to 1988 baseline levels.

Due to the cost and non-enforceability of corporate P2 com-
mitments, the extant literature has understandably focused on
investigating the motives for their adoption and their effectiveness
at curbing pollution from levels that would otherwise have been
produced (Arora and Cason, 1996; Bi and Khanna, 2012; Gamper-
Rabindran, 2006; Harrington et al., 2014; Hsueh, 2013; Innes and
Sam, 2008; Khanna and Damon,1999; Sam et al., 2009; Videras and
Alberini, 2000; Vidovic and Khanna, 2007; Welch et al., 2000). In
contrast to these papers, our aim is to gauge if P2 activities play a
catalyzing role in promoting firm-funded environmental innova-
tion. The apparent success of the 33/50 program, the PPA's
emphasis of voluntary P2 practices, and greater willingness of
private firms to self-regulate served as a springboard for several
more ongoing EPA-sponsored P2 programs (www.epa.gov/
partners) and several state-based P2 programs such as Ohio Tox-
Minus (modeled after the 33/50) and Encouraging Environmental
Excellence (E3) initiatives. The relevance of our study stems from
the increasing pervasiveness of the voluntary approach to envi-
ronmental regulation nationally and internationally as discussed in
the introduction, combined with the role of technological innova-
tion as an indispensable driver of pollution abatement. In the next
section, we introduce and discuss the key hypothesis empirically
tested in the paper.
2.2. Main hypothesis

Honoring P2 commitments often requires the implementation
of costly environmentally-friendly activities (National Pollution
Prevention Round Table, 1997; Sam et al., 2009). To the extent
that firms take their voluntary commitments of pollution reduction
seriously, P2 programs could enhance the attractiveness of new
environmental technologies that reduce the costs of self-imposed
emission reductions, hence eliciting more spending on environ-
mental research.6 Both anecdotal and empirical evidence indicate
that some participants in P2 programs follow through with their
pledges to reduce emissions. Despite the lack of enforceability of
commitments by 33/50 participants, Bi and Khanna (2012), Innes
and Sam (2008), Khanna and Damon (1999), and Sam et al.
(2009) find that the 33/50 program was responsible for signifi-
cant reductions in the emission of targeted chemicals among
participant firms. Hsueh (2013) reports that a voluntary agreement
between the EPA and the pressure-treated wood industry lowered
arsenic use “to levels not seen since the 1920s.” Also, unlike tar-
geted programs such as the 33/50 program, voluntary P2 practices
have a much wider coverage of toxic chemicals and therefore have
more room for new ideas regarding pollution prevention technol-
ogies. Furthermore, a source reduction clearinghouse was formed
under the PPA to gather and share information about new envi-
ronmental control technologies related to P2 practices. Such
knowledge exchange may generate positive spillovers that trans-
late into more environmental patenting at the firm level. For all
these reasons, we conjecture that:

Voluntary P2 activities increase the incentives for environmental
R&D and therefore lead to more environmental patents

http://www.epa.gov/partners
http://www.epa.gov/partners


Table 1
Variable definitions.

Variable name Definitions Mean St. Dev.

Env. patents broad Number of firm-level environmental patents (broad) 10.41 26.42
Env. patents narrow Number of firm-level environmental patents (narrow) 5.750 15.38
Releases Aggregate releases of core CAA-regulated chemicals, in 100,000 of lbs. 6.639 18.50
Weighted releases Aggregate toxicity-weighted releases of core CAA-chemicals, in billions

of toxicity-weighted lbs.
7.952 79.399

P2 Number of P2 activities adopted by a firm in year t 6.771 13.17
Workforce Number of employees, in thousands 24.36 49.08
Cumulative P2 Cumulative number (stock) of P2 practices adopted by a firm

between 1991 to year t-1
42.019 83.537

Env. industry patents Number of industry-wide environmental patents 470.9 330.9
All industry patents Number of all industry-wide patents 2635 2276
Age of capital Ratio of net assets to gross assets 0.773 0.0979
Capital intensity Ratio assets to sales 0.0605 0.0570
Retained earnings Three-year moving average of retained earnings to Sales 0.154 1.056
Sales Sales revenue, in billions 5.657 14.93
Sales growth Growth rate of sales revenue 11.27 33.50
Retained earnings Three-year moving average of retained earnings to Sales 0.154 1.056
R&D intensity Ratio of R&D expenditures to Sales 4.336 33.86
Herfindahl index Herfindahl index calculated at the two-digit SIC 5.744 2.610
Inspections Number of inspections by federal and state environmental agencies 4.186 9.400
Enforcement actions Number of enforcement actions 1.203 3.166
Out of compliance Number of instances a firm is out of compliance 2.964 7.450
Self-inspections Number of firm-conducted inspections 0.0463 0.425

Notes: Averages are based on 2876 observations for Sales growth and 3306 observations for the remaining variables (sample prior to lagging observations).
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3. Data and methods

3.1. Data

Several data sources are combined, resulting in an unbalanced
panel of 352 manufacturing companies (SICs 20e39) over the
period of 1991e2000. Following previous studies (Brouhle et al.,
2013; Brunnermeier and Cohen, 2003; Carri�on-Flores and Innes,
2010; Carri�on-Flores et al., 2013; Jaffe and Palmer, 1997;
Johnstone et al., 2010), successful environmental patent applica-
tions are treated as proxies for environmental innovation. Envi-
ronmental patents are distinguished by patent classifications that
relate to air and water pollution, hazardous waste prevention and
control, waste disposal, recycling, and renewable energy (Carri�on-
Flores and Innes, 2010). The patent data is acquired from United
States Patent and Trademark Office (USPTO). Data on toxic chemical
releases, voluntary P2 practices (source reductions), and parent
company names are obtained from the EPA's TRI database.
Following Carri�on-Flores and Innes (2010), we restrict our attention
to the 153 core chemicals included in the TRI in 1988 that are
subject to the emission standards and monitoring under Title III of
the Clean Air Act (CAA). We therefore aggregate the releases related
to these chemicals at the firm level to obtain our measure of
emissions. Facility-level enforcement and inspection actions are
obtained from the Integrated Data for Enforcement Analysis (IDEA)
database. We aggregate facility-level environmental data (releases,
source reduction activities, and enforcement data) annually to
obtain firm-level values. Financial data (sales, retained earnings,
R&D expenditures, assets, employment) are extracted from the
Standard & Poor's Compustat database. Following Innes and Sam
(2008), we restrict our study to firms in the manufacturing in-
dustry (SICs 20e39) which is responsible for vast majority of the
TRI chemicals releases. Table 1 reports the descriptive statistics of
the variables used in the study.
7 For each firm, this variable is created by adding up all environmental patents at
the 2-digit SIC level, minus the patents of the firm in question.
3.2. Model specification

Following our discussion above, our dependent variable is the
count of environmental patents measured at the firm level as in
Brouhle et al. (2013) and our key covariate of interest is the number
of voluntary P2 activities adopted by a firm. Besides the effects of
voluntary P2 activities and CAA-regulated releases, we control for
several other covariates that have been hypothesized to impact
environmental innovation. First, we control for R&D intensity since
R&D spending is a key input in the patenting process and because
firms that are more research intensive may be more apt at capi-
talizing on knowledge spillovers from industry or government
research (Cohen and Levinthal, 1990).

Second, we add sales and workforce of the firm as explanatory
variables to control for effects of firm size on innovation. Larger
firms may enjoy learning economies (larger firms are more likely to
have been around longer) and economies of scale and scope ad-
vantages relative to smaller companies (Macher and Boerner, 2006)
when it comes to innovation.

Third, research in cleaner technologies by other firms in a
related line of business may incentivize firms to spend more on
environmental research (Jaffe and Palmer, 1997) in order to take
advantage of positive spillovers or for competitive reasons (Brouhle
et al., 2013); we use aggregate industry patents to control for these
effects, and further categorize them into environmental patents
and non-environmental patents.7

Fourth, opportunities and incentives to innovate may also
depend on the structure of a firm's production process with more
capital intensive processes presenting more scope for cost-
reducing environmental R&D (Carri�on-Flores et al., 2013). We
therefore use the ratio assets to sales as our measure of capital
intensity. We expect the coefficient on capital intensity to be
positive.

Fifth, we include the age of capital calculated as the ratio of net
assets to gross assets (Khanna and Damon, 1999) to capture the
effect of newness of production assets on environmental innova-
tion. Firms with newer assets (ratio closer to 1) may be less dirty
and therefore less likely to invest in cleaner production technolo-
gies. A negative relationship between age of capital and environ-
mental innovation is therefore expected (Carri�on-Flores and Innes,
2010).
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Sixth, industry concentrationmay spur environmental R&D since
concentration gives rise to “raising rivals' costs” motives for height-
ened environmental research (Innes and Bial, 2002). Conversely,
high industry concentrationmay jeopardize research spending since
competitive pressures are lower (see e.g., Cohen and Levin,1989 for a
discussion of concentration and R&D). Carri�on-Flores and Innes
(2010) find a negative relationship between de degree of market
concentration and environmental innovation. Following standard
practice,we include theHerfindahl index calculated at the2-digit SIC
level to capture the effects of market concentration.

Seventh, economists have argued that a firm's internal financial
resources are a critical determinant of its R&D investment in part
because of asymmetric information and the high costs of mitigating
it. Asymmetric information arises because R&D projects are
inherently riskier, and the innovator has more information about
the likelihood of success of a R&D project than potential investors.
This problem is exacerbated by the ease of imitating successful
innovation which precludes full disclosure to potential investors.
External parties are therefore prone to decline or demand higher
premium in order to finance R&D projects (Hall, 2002). Conse-
quently, we use a three year moving average of retained earnings
normalized by sales as an explanatory variable.

Our empirical model follows directly from the structural model
in Carri�on-Flores et al. (2013) which itself simply extends themodel
in Carri�on-Flores and Innes (2010) by adding the effects of partici-
pation in the 33/50 program. The fact that Carri�on-Flores et al.'s
(2013) model incorporates a voluntary program makes it particu-
larly attractive for our purpose since we also consider a (different)
voluntary P2 program. The model posits that both contempora-
neous CAA-regulated emissions (which proxy for changes in the
stringency of environmental standards) and lagged emissions
(which proxy for the initial level of emission standards) are de-
terminants of environmental patents and that the remaining control
variables (described above) affect environmental patents with a
two-year lag which is the assumed average delay between R&D and
patent application.8
9 Let yit be the count of environmental patents; we posit the following Poisson
relationship between yit and the control variables:yit ¼ rit þ εit ¼ expðxitbÞ þ εit ,
where xit is the 1 � k vector of controls, b is the k � 1 parameter vector, and εit is
represents random unobserved heterogeneity. In our model, it is assumed that
EðεitjxitÞ s0 owing to endogeneity of P2 adoption and emissions. As shown in
Windmeijer and Santos Silva (1997), with valid instruments zit ; EðεitjzitÞ ¼ 0; hence
we can obtain, in two steps, consistent, efficient, and asymptotically normal Poisson
coefficient estimates by minimizing: ðy� rÞ0Zð gZ 0

UZÞ�1Z
0 ðy� rÞ; where

ð gZ 0
UZÞ ¼ Pn

i¼1 ðyit � ~ritÞ2zitz
0
it is an estimate of the asymptotic variance of Z

0 ðy� rÞ
and ~rit ¼ expðx0

it
~bÞ is obtained from the first round estimation of b. We use the IV

POISSON command in Stata to estimate the model parameters.
10 To explore the robustness of our results with respect to functional form, we
estimated the following inverse hyperbolic sine (IHS) transformation model:
log(yit þ (1 þ yit2)1/2) ¼ Xitb þ 3it, where the variables are as defined in the previous
footnote. Following MacKinnon and Magee (1990) and Pence (2006), we use the
IHS transformation of the dependent variable (log(yit (1 þ yit2)1/2) in order to
appropriately account for the prevalence of zeroes in firm level patent data. Small
3.3. Econometric issues

Reverse causality bias between contemporaneous emissions and
environmental patents is a key concern; specifically, environmental
innovation may lead to tighter emission standards as evidenced in
Carri�on-Flores and Innes (2010). Also, lagging notwithstanding, P2
activities are likely endogenous thanks to unobserved random fac-
tors that affect both decisions to patent and to participate in
voluntary programs. For example, firms with environmentally
proactive management may be more likely to invest in patentable
environmental research and self-select into voluntary pollution
control initiatives. We use four firm/time-varying instruments to
identify the effects of these two variables. Specifically, we use
enforcement variables as instruments as there is significant empir-
ical evidence that more inspections and enforcement actions spur
emission reductions (Foulon et al., 2002; Gray and Deily, 1996; Gray
8 Briefly, the model conceptualizes four relationships into structural equations:
the first equation assumes that environmental patents are determined by (twice)
lagged environmental R&D and other controls; the second equation assumes that
actual emissions are determined by prevailing emission standards; the third
equation posits that said emission standards are explained by contemporaneous
environmental technology (patents), lagged standards, and lagged voluntary P2
reductions. The fourth equation specifies environmental R&D as a function of ex-
pected (next period) emission standards or targets, current standards, and volun-
tary P2 adoption. Therefore P2 adoption impacts environmental technology via its
effects on environmental R&D and emission standards. See Carri�on-Flores and
Innes (2010) and Carri�on-Flores et al. (2013) for a detailed derivation of the model.
and Shimshack, 2011; Innes and Sam, 2008; Laplante and Rilstone,
1996; Shimshack and Ward, 2008) and participation in voluntary
programs (Bi and Khanna, 2012; Gamper-Rabindran, 2006; Innes
and Sam, 2008; Videras and Alberini, 2000) but have no significant
effect on innovation (Brouhle et al., 2013; Brunnermeier and Cohen,
2003; Carri�on-Flores and Innes, 2010; Carri�on-Flores et al., 2013).
Following Carri�on-Flores et al. (2013), we consider the number of
inspections visits, the number of enforcement actions, the number
of instances a firm is deemed out of compliancewith environmental
laws, and the number of self-inspections. All four instruments are
lagged three-years.

Consonant with previous econometric treatment of patents as
dependent variables (e.g., Hausman et al., 1984) and because of the
endogeneity of some of the covariates, we estimate the model using
an instrumental variable Poisson method.9 In addition to the vari-
ables discussed above, we also control for industry and time fixed
effects to account for industry differences inpropensity to patent and
common trends in technological innovation. Finally,we compute and
report standard errors clustered at thefirm-levelwhich are robust to
heteroskedasticity and serial correlation within firms.

4. Results and discussion

The coefficient estimates are displayed in Table 2. All models
presented in Table 2 are estimated with an instrumental variable
Poisson as mentioned above.10 We present five models to test the
robustness of our main results to alternative measures of envi-
ronmental patents and toxic releases and to allow for persistence
and nonlinearities in the effects of P2 practices. Following Carri�on-
Flores and Innes (2010), Models (1)e(4) are estimated using a broad
count of environmental patents. This broad definition of environ-
mental patents includes all patents related to wind energy, solid
waste prevention, water pollution, recycling, alternative energy,
alternative energy sources, geothermal energy, air pollution con-
trol, solid waste disposal, and solid waste control.

Model (1) is our baseline model; Model (2) adds to Model (1) a
square of the lagged P2 variable to test if the effects of P2 adoption
values of yit aside, the IHS transformation is approximately equal to log(2*yit) or
log (2) þ log(yit); hence coefficient estimates are interpreted the same way as if
log(yit) was used as the dependent variable. The key advantage of the IHS trans-
formation is that it is defined when yit ¼ 0 while the regular log transformation
(log(yit)) is not. Doing so, we find results that are quite consistent with the Poisson
estimates reported in Table 2. Specifically, we find the P2 adoption spurs a sta-
tistically significant increase in environmental patents as hypothesized. We also
find evidence that both the expectation of stricter emission standards as well as
initial standards boost environmental patents. We note, however, that the mag-
nitudes of the estimated effects are higher in the IHS results reported above than
in the Poisson results. Due to both space considerations and out of concern for
consistency with previous literature–which has mostly relied on Poisson regres-
sion, we have not reported the full IHS results in the paper. They are available
upon request.



Table 2
Instrumental variable Poisson estimation of the determinants of environmental innovation.

Variables Broad count Narrow count

Model (1) Model (2) Model (3) Model (4) Model (5)

Releaset �0.110** �0.111** �0.101** �0.0467* �0.117*
(0.0514) (0.0433) (0.0421) (0.0274) (0.0598)

Releaset-2 0.0756** 0.0766*** 0.0714** �0.00600 0.0805**
(0.0356) (0.0297) (0.0297) (0.00811) (0.0410)

P2t-2 0.0243*** 0.0302* 0.0281*** 0.0299*** 0.0266***
(0.00620) (0.0157) (0.0103) (0.00935) (0.00632)

P2t-2 squared �6.49e-05
(0.000138)

Cumulative P2t-2 �0.00140
(0.00209)

Workforcet-2 0.000549 0.000894 0.000689 0.00306 �1.89e-05
(0.00387) (0.00360) (0.00347) (0.00262) (0.00452)

Environ. industry patentst-2 0.00269*** 0.00221*** 0.00246*** 0.00178** 0.00239**
(0.000844) (0.000852) (0.000888) (0.000737) (0.000941)

All industry patentst-2 �0.000663*** �0.000637*** �0.000675*** �0.000569*** �0.000532***
(0.000134) (0.000138) (0.000155) (0.000138) (0.000161)

Age of capitalt-2 �3.120** �3.122*** �3.073*** �3.008** �3.053**
(1.304) (1.185) (1.184) (1.228) (1.353)

Capital intensityt-2 4.719*** 4.937*** 4.408*** 4.811*** 3.693***
(1.098) (1.183) (1.219) (1.224) (1.309)

Salest-2 0.0308** 0.0292** 0.0294** 0.0255** 0.0350**
(0.0146) (0.0134) (0.0128) (0.0118) (0.0165)

Sales growtht-2 �0.00790* �0.00778* �0.00812* �0.00960* �0.00981*
(0.00471) (0.00425) (0.00449) (0.00522) (0.00530)

Retained earningst-2 0.218*** 0.214*** 0.211*** 0.231*** 0.153***
(0.0572) (0.0543) (0.0575) (0.0667) (0.0589)

R&D intensityt-2 0.0163** 0.0156** 0.0158** 0.0193** 0.0133*
(0.00742) (0.00753) (0.00747) (0.00756) (0.00686)

Herfindahl indext-2 �0.0860 �0.127 �0.0632 �0.191** �0.0386
(0.107) (0.115) (0.124) (0.0962) (0.112)

Constant 1.519 1.816 1.304 1.848 1.132
(1.393) (1.190) (1.429) (1.476) (1.474)

Observations 2031 2031 2031 2031 2031
Industry fixed effects YES YES YES YES YES
Year fixed effects YES YES YES YES YES
Instruments YES YES YES YES YES
Hansen test p-value 0.263 0.463 0.197 0.106 0.72

Notes: Cluster-robust standard errors in parentheses. ***p < 0.01, **p < 0.05, *p < 0.1.
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are subject to diminishing marginal returns. Since the P2it-2 vari-
able only captures new P2 practices adopted by a firm in year t-2
(Harrington, 2012), Model (3) adds to Model (1) the lagged cu-
mulative number (stock) of P2 practices adopted by a firm be-
tween 1991 to year t-3 to examine the persistence of P2 effects on
environmental innovation. Given the different degrees of toxicity
of the chemicals considered, we re-estimated our baseline Model
(1) using a toxicity-weighted aggregate of the same chemicals to
further explore the robustness of our findings.11 The toxicity
weighted measure we use is computed by the EPA based on their
Risk Screening Environmental Indicators (RSEI) model and
11 We should note that simple aggregation of releases is commonly done in this
literature in part due to concerns for the accuracy of toxicity weights; Guerrero and
Innes (2013, footnote 10) have a good discussion of why simple aggregation by
weight is generally preferred to toxicity weighted aggregation when the number of
chemicals is large.
12 Toxicity weights of chemicals are constructed using four main parameters:
Reference Dose (RfD), Reference Concentration (RfC), Oral Slope Factor, and Inha-
lation Unit Risk. In addition, uncertainty for certain chemical toxicity weights is
adjusted by the weight of evidence determination. The RfD or RfC are defined as
daily exposure level to a hazard chemical that can be tolerated over a lifetime
without an appreciable risk of noncancer effects (USEPA, 1988). The Oral Slope
Factor is constructed to measure the incremental lifetime risk of cancer resulting
from oral intake of the chemical. The Unit Inhalation Risk is the estimated upper-
bound lifetime risk of cancer due to continuous exposure to a chemical at a con-
centration level of 1 mg/m3 in air. The technical appendix (see link) explains in
detail the construction of the toxicity weights. http://www.epa.gov/oppt/rsei/pubs/
technical_appendix_a_toxicity_v2.3.1.pdf.
obtained from the EPA's TRI.NET database. Model (4) presents the
results based on toxicity-weighted releases of the CAA-chem-
icals.12 To mitigate the concern about the dependent variable
(environmental patents) being too broad, we re-estimate Model
(1) using a more conservative measure of environmental patents
based on a narrower definition as in Brunnermeier and Cohen
(2003). The results for this narrow count of environmental pat-
ents are in Model (5).13 Before delving into the discussion of P2
effects, we first note that the Hansen test of overidentification fails
to reject the null of instrument exogeneity in all models with p-
values ranging between 0.1 and 0.72 (bottom of Table 2).14 Also,
overall, the results are quite robust to the specification of the
13 Given the diversity of the P2 practices, we followed Sam (2010) and dis-
aggregated them into three broad categories: practices that require the imple-
mentation of improved operating procedures; practices that focus on investment in
environmentally friendly equipment, and practices that involve material modifi-
cations. We re-run model (1) using the three separate P2 measures instead one
single aggregate P2 measure. Doing so, we did not find any of the three P2 variables
to be statistically significant. We suspect that the reason for the lack of significance
is the high degree of correlation between the three measures: 0.81 between pro-
cedural and equipment P2s, 0.71 between material and procedural P2s, and 0.65
between material and equipment P2s. However when we only include equipment
and non-equipment P2s, the coefficient on equipment P2s is marginally significant
at the 10% level.
14 We also regressed the endogenous variables (emissions and P2 activities) on
the instruments and found them to the jointly significant in both regressions,
corroborating the instrument relevance documented in Carri�on-Flores et al. (2013)
and others as discussed above.

http://TRI.NET
http://www.epa.gov/oppt/rsei/pubs/technical_appendix_a_toxicity_v2.3.1.pdf
http://www.epa.gov/oppt/rsei/pubs/technical_appendix_a_toxicity_v2.3.1.pdf
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dependent variable (broad vs. narrow count of patents) and
pollutant releases (toxicity-weighted or unweighted); with the
exception of lagged releases (not significant in Model (4)) and the
Herfindahl index (significant in Model (4)), all explanatory vari-
ables are statistically significant in all five models.

The results indicate that an anticipated tightening of emission
standards leads to a significant increase in environmental patents,
as evidenced by the negative coefficient on contemporaneous
emissions in all five specifications.15 Specifically, an anticipated
reduction of 1% in unweighted CAA-regulated emissions (based on
the sample mean of 6.639) is estimated to increase the number of
environmental patents by between 0.73 and 0.78 percent.16 Inter-
estingly, our coefficient estimates on (unweighted) contempora-
neous emissions are similar in magnitude to corresponding
estimates reported Carri�on-Flores et al. (2013)'s industry-level
study–approximately �0.11 in our Table 2 models vs. �0.13 in
their model 11 of Table 5, suggesting the industry-level aggregation
does not significantly affect the point estimates of induced inno-
vation effects. This may be explained by less within-industry het-
erogeneity when it comes to responses to stricter emission
standards as firms in the same industry tend to use the same pol-
lutants. Likewise, we also find that the tightening of initial level of
emission standards induces a small but significant increase of
environmental patents.17

As expected, industry-level environmental patents, sales, age of
capital, capital intensity, retained earnings, and R&D intensity carry
coefficients that are significant in the expected direction. An
additional environmental patent by another firm in the same in-
dustry leads to a 0.27 percent (per Model (1)) increase in the
number of firm-level patents likely owing to positive spillovers
from related research. Conversely, an increase in the number of
non-environmental industry patents has the opposite effect once
the effect of environmental patents is controlled for, although the
effect is small. We postulate that out of concern for their compet-
itiveness, firms may respond to a greater number of non-
environmental industry patents by redirecting R&D resources to
non-environmental research. The coefficients on sales and retained
earnings indicate that larger, more deep-pocketed firms are more
likely to invest in patentable environmental research. The growth
of annual sales is found to negatively impact environmental pat-
ents, which is not surprising given that firms with higher growth
are generally smaller companies that do not have the financial re-
sources to undertake environmental research on the same level as
larger firms.

Turning to estimated impact of P2 adoption, we find that the
adoption of an additional P2 practice leads between 2.4 and 3
percent increase in the number of environmental patents, lending
support to our main hypothesis.18 This effect is significant statisti-
cally and economically. The coefficient estimate in Model (1) im-
plies that firms that go from no P2 adoption to the sample average
of P2 practices per firm (approx. 7 practices) enjoy on average a 17
15 Based on previous findings in the literature, there is evidence to suggest that
emission targets are influenced by both regulatory standards and non-regulatory
abatement pressures from environmental interest groups, market forces, stake-
holders etc., leading to self-selection into voluntary P2 programs. As such, we
caution that lower emissions may not be entirely ascribed to changes in regulatory
standards as discussed in Brunnermeier and Cohen (2003).
16 We obtained the 0.73 percent figure by multiplying the coefficient estimate for
contemporaneous releases in Model (1) (�0.11) by a 0.06639 which represents a 1%
increase in the sample mean of emissions per Table 1. The figure 0.78 percent was
likewise obtained by multiplying 0.06639 by 0.117, the coefficient in model (5).
17 The impact of the initial emission standards is obtained by summing the two
coefficients on contemporaneous and lagged emissions. The sum is negative and
statistically different from zero in all but Model (4).
18 The Poisson coefficients can be interpreted as semi-elasticities.
percent bump in environmental patents, which corresponds to
about 1.8 patents based on the average number of 10.4 environ-
mental patents per firm. The effect is smaller but still significant for
the narrower measure of environmental patents in model (5).
Specifically, an increase of 7 P2 practices (sample average) yields
approximately one additional environmental patent for the alter-
native measure of the dependent variable based on the average of
5.75 patents per firm. We did not find evidence that the P2 effects
are subject to diminishing marginal returns; the coefficient on the
squared P2 inModel (2) is negative but not significant. Likewise, the
coefficient on cumulative count of P2 adoption in Model (3) is not
significant, suggesting that P2 effects on environmental innovation
are not time-persistent.19

We should also note the reported impact of P2 adoption on
environmental patents in this study only represents the direct
impact. In addition to the direct effect, P2 adoption also may indi-
rectly increase environmental patents by lowering pollutant re-
leases. For example, Harrington et al. (2014) find that P2 adoption
“leads to lower steady-state releases, with estimated reductions
between 35% and 50%.” Per our findings and those of Carri�on-Flores
and Innes (2010), lower releases (spurred by P2 adoption) will, in
turn, lead to more environmental patents.

Our results stand in contrast to Carri�on-Flores et al. (2013) who
report an average negative impact of the 33/50 voluntary program
on environmental patents and Brouhle et al. (2013) who find that
participation in Climate Wise boosted environmental patents only
for firms in the lower spectrum of R&D intensity. The differences
between these three studies may be explained by the nature of the
voluntary programs considered. As mentioned earlier, both the 33/
50 (Carri�on-Flores et al. (2013) and Climate Wise (Brouhle et al.
(2013) were designed primarily to achieved short term reductions
of a specific set of emissions. These programs' explicit short-term
objectives may have incentivized program participants to invest
in short-term reduction activities (e.g., improved monitoring pro-
cedures) at the expense of patentable research after the programs
ended. However, this myopia on short-term environmental per-
formance is far less likely to occur for the P2 practices we consider
in this analysis which do not have explicit short-term pollution
reduction goals.

It is important to also note that the difference between our
finding and Carri�on-Flores et al.'s (2013) in particular may also have
to do with the use of firm-level data vs. industry-level data. Unlike
emission standards, P2 adoption decisions are voluntarily made by
firms; therefore considerable within-industry (firm) heterogeneity
is expected. In the presence of such heterogeneity, firm-level data is
more appropriate then industry-level aggregate data which may
attenuate the true effects of voluntary P2 activities.

5. Conclusion

In light of the growing reliance by the federal and state gov-
ernments on voluntary P2 programs, the empirical literature has
been largely confined to explaining firms' motives for participating
in them and whether they are effective in reducing emissions.
Using a sample of large US manufacturing firms, this paper focuses
on the effects of voluntary P2 adoption on firm-level environmental
19 However, the stock of P2 practices may indirectly affect environmental inno-
vation by stimulating new P2 adoptions. To check this possibility, we regressed the
P2 variable on the (twice-lagged) level and square of cumulative P2s and the
remaining covariates. We found that firms with higher cumulative P2s are more
likely to adopt new P2s, subject to diminishing returns. Specifically, we found that
the marginal effect of cumulative P2 on new P2 adoptions is positive for firms with
fewer than 112 cumulative P2s and negative for firms with more. These results
suggest that the history of P2 at least indirectly impacts environmental innovation.
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innovation, controlling for the effects of several relevant covariates.
We find that the adoption of P2 practices triggers a significant in-
crease in environmental patents. Specifically, we find that the
adoption of one P2 practice results in about 2.5% increase in the
number of environmental patents on average. Our results also show
that the stringency of environmental regulation (proxied by CAA-
regulated emissions) has a significantly impact on environmental
innovation, in congruence with Porter's hypothesis.

Our reported impact of P2 activities on environmental innova-
tion stands in contrast with the findings of similar studies. Carri�on-
Flores et al. (2013) find that the 33/50 led to a net reduction in
environmental patents in the long-run while Brouhle et al. (2013)
find tenuous evidence that the Climate Wise program led to
increased environmental patenting for less R&D intensive firms.
Conversely, we provide evidence of significant salutary effects of P2
practices on environmental patents. The difference between our
finding and results discussed above may be explained by design of
the P2 programs under consideration. Both the 33/50 and the
Climate Wise were designed to achieve short-term pollution relief
with explicitly stated target dates and as such may have encour-
aged participants to embrace and invest in short term waste pre-
vention efforts so as to achieve these goals. We conjecture that the
positive effects reported in this study may be the result of the
broadness and flexibility of the PPA's P2 program which affords
firms with the time to set their own pollution reduction goals and
to choose the appropriate cost-reducing technologies to achieve
them. This aligns broadly with Johnstone and Hascic (2011)’s
finding that more flexible regulation fosters higher quality
innovations.

Overall, our study adds to a limited number of studies on the
causal links between corporate environmentalism and innovation
and points to another beneficial channel of P2 programs, beyond
direct pollution reduction (e.g., Harrington et al., 2014) and
improved compliance record (Sam, 2010), that has not yet been
widely recognized.
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