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The Accuracy and Informativeness of Agricultural Baselines

Abstract

Agricultural baseline projections play an important role in shaping agricultural policy, yet these

projections have not been rigorously evaluated. This study evaluates the accuracy and informative-

ness of two widely used baselines for the US farm sector published by the United States Department

of Agriculture (USDA) and the Food and Agricultural Policy Research Institute (FAPRI) in three

steps. First, we examine the average percent errors of the projections and perform tests of bias.

Second, we use a novel testing framework based on the encompassing principle to test the predictive

content of the projections for each horizon, determining the longest informative projection horizon.

Third, we compare the USDA and FAPRI baseline projections using a multi-horizon framework that

considers all projection horizons jointly. We find that prediction error and bias increase with the

horizon’s length. The predictive content of the baselines projections for most variables diminishes

after 4-5 years. The multi-horizon comparison suggests that neither USDA nor FAPRI projections

have uniform or average superior predictive ability over the other for most variables. Our findings are

useful for the agencies producing these baselines and for the policymakers, agricultural businesses,

and other stakeholders who use them.

Keywords: farm income, commodity projections, forecast evaluation, forecast encompassing, path

forecasts, baseline projections, USDA baselines, FAPRI baselines

JEL Codes: C53, Q14



1 Introduction

Long-term market projections play a vital role in both policy and investment decisions. Federal gov-

ernment statistical agencies, such as the United States Department of Agriculture’s (USDA) Economic

Research Service (ERS), are tasked with “collecting, producing, and disseminating data that the public,

businesses, and governments use to make informed decisions”(Office of Management and Budget, 2020).

To satisfy this mandate, ERS leads a team from 10 USDA agencies to produce annual projections of key

measures of agricultural market conditions for the next decade. These projections facilitate comparisons

of policy alternatives by providing a conditional “baseline” scenario based on specific macroeconomic,

weather, policy, and trade assumptions. In addition, the Food and Agricultural Policy Research Institute

(FAPRI) produces similar ten-year projections of key agricultural variables. USDA baseline projections

are typically released in February, with the FAPRI baseline projections following in March. Over the

years, the baseline projections have been used for a variety of purposes, including estimating farm pro-

gram costs and preparing the President’s budget. Despite their growing role in shaping agricultural

policy, the baselines have not been rigorously evaluated. In this study, we evaluate the accuracy and

informativeness of the USDA and FAPRI baselines using novel econometric techniques.

Our study focuses on two important series of projections from USDA and FAPRI: 1) projected

bottom-line net cash income and its components, and 2) projected harvested acres, farm price, and yield

of three major commodities (corn, soybeans, and wheat). The projections are examined in three steps.

First, we examine the accuracy of both USDA and FAPRI projections using standard measures of accu-

racy, such as mean absolute percent error (MAPE) and root mean square percent error (RMSPE). As

part of our preliminary analysis, we also investigate the degree to which each projection exhibits system-

atic bias, following Holden and Peel (1990). Previous studies have identified a systematic downward bias

in USDA’s initial forecasts of bottom-line net cash income, crop receipts, livestock receipts, and cash ex-

penses (Isengildina-Massa et al., 2021; Bora, Katchova, and Kuethe, 2021). Since many USDA forecasts

are used as an input for the beginning conditions of the USDA baseline models, baseline projections may

show a similar tendency to under-predict.

Second, we examine the extent to which the value of information for each series of projections dimin-

ishes across the projection horizon. Both USDA and FAPRI baselines provide projections for ten years

into the future, and we test the null hypothesis that the projections become uninformative beyond a

given horizon using the encompassing approach developed by Breitung and Knüppel (2021). Our tests of

predictive content use the unconditional mean as the uninformative (näıve) benchmark, and compare the

mean square error of the projections to the unconditional variance of the target variable in a regression

framework. The informativeness tests may be particularly useful for policymakers with an interest in

long-run policy concerns, such as climate change, which exceed the current ten-year horizon. If the cur-

rent projections are uninformative beyond a few years, it will be difficult to provide accurate projections
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for longer horizons.

Finally, we formally test whether USDA or FAPRI provide more accurate baseline projections. Tra-

ditional forecast evaluation tests examine predictions at a single horizon (e.g., Diebold and Mariano,

1995; Harvey, Leybourne, and Newbold, 1997). Since the full ten-year path of baseline projections are

used in policy analysis, these tests may provide inaccurate evaluation of relative accuracy, as one set of

projections may perform better than the other at some horizons and worse at the remaining horizons. As

a result, we evaluate the relative predictive accuracy of USDA and FAPRI using a novel testing procedure

developed by Quaedvlieg (2021) that includes information across all horizons jointly. We test for superior

predictive ability using two forms of the Quaedvlieg (2021) test. The first specification tests whether

one set of projections perform better than the other across all projection horizons (uniform predictive

ability). The second specification relaxes the assumption of uniform predictive ability by testing for

differences in accuracy using a weighted average of loss differentials across horizons (average predictive

ability). Thus, the second specification allows one baseline to have superior predictive ability over the

other, even if it performs worse in some horizons. We further perform regression-based tests to examine

whether the FAPRI projections encompass the USDA projections and vice versa (Harvey, Leybourne,

and Newbold, 1998).

Our analysis yields a number of significant findings. First, the accuracy measures suggest that

projection errors increase across the horizon for most variables, with the notable exception of crop yield

projection. Second, our analysis identifies a number of systematic biases. For example, soybean harvested

acres are consistently under-predicted while wheat harvested acres are consistently over-predicted at all

horizons. In addition, net cash income, crop receipts, livestock receipts, and cash expenses are biased

downward, consistent with previously reported bias in ERS’s farm income forecasts for the one-year

horizon (Isengildina-Massa et al., 2021; Bora, Katchova, and Kuethe, 2021), but the magnitude of bias

increases with the projection horizon. Third, the tests of predictive content show that, for most variables,

the projections stay informative up to 4-5 years and diminish thereafter. Finally, the multi-horizon

comparison tests suggest that neither USDA nor FAPRI projections outperform one another across

the entire projection horizon (uniform predictive ability), except for farm-related income, where FAPRI

performs better than USDA, and corn price and soybean yield, where USDA perform better than FAPRI.

However, the FAPRI projections perform better at shorter horizons, which may be a result of the later

release and the potential to include updated information (including USDA baseline projections released

a month earlier). These findings may have important implications for the models and processes used to

produce the baseline projections by both USDA and FAPRI, as well as for projection users.

The remainder of the paper is organized as follows. The next section provides a detailed description of

the agricultural baseline projections produced by USDA and FAPRI, followed by a summary of our data.

Subsequent sections describe our empirical approach and findings. The final section provides concluding
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remarks.

2 Agricultural Baseline Projections

A number of government agencies, international organizations, and private firms produce long-run projec-

tions of key economic variables to help formulate policy and to support long-term planning. For example,

within the agricultural sector, the Organisation for Economic Co-operation and Development (OECD)

produces a ten-year global outlook report in collaboration with the Food and Agricultural Organization

(FAO) which contains projections of agricultural indicators, such as market conditions and consumption

(OECD and Food and Agriculture Organization of the United Nations, 2020). In addition, the Con-

gressional Budget Office (CBO) produces long-run cost projections for several mandatory Federal farm

programs, such as price loss coverage (PLC), agricultural risk coverage (ARC), crop insurance, disaster

assistance, and conservation programs. Each of these reports provide projections on some indicators

of U.S. agricultural market conditions, such as prices, acreage, and yields of key commodities. In this

study, however, we focus on the baseline projections produced by USDA and FAPRI, which offer the most

comprehensive coverage of US agricultural indicators over a ten-year horizon. The USDA and FAPRI

baselines provide projections for key indicators of agricultural market conditions, including commodity

prices and production, global agricultural trade, and farm income.

USDA baseline projections are produced by the Interagency Agricultural Projections Committee,

comprised of experts from 10 USDA agencies and offices. USDA emphasizes that the baseline projections

are “not intended to be a forecast of what the future will be” (USDA Office of the Chief Economist,

2020, pp. 1). Instead, the USDA baseline offers a “conditional, long-run scenario about what would

be expected to happen under a continuation of current farm legislation and other specific assumptions”

(USDA Office of the Chief Economist, 2020, pp. iii). The specific assumptions include normal weather

and the absence of domestic or external shocks affecting global agricultural supply and demand. In

addition, the macroeconomic conditions, productivity growth rates, and trade policies are assumed to

persist throughout the projection period. USDA’s baseline projections reflect a composite of model

results and judgment-based analysis (USDA ERS, 2020). The projections are designed to provide “a

neutral reference scenario that can serve as a point of departure for a discussion of alternative farm

sector outcomes that could result under different domestic or international conditions” (USDA Office

of the Chief Economist, 2020, pp. 1). Hjort et al. (2018) provides a detailed description of the USDA

baseline model and various processes followed during the preparation of the baseline report. ERS begins

the baseline projection process in August and September of the preceding year by developing domestic

and international macroeconomic assumptions. Over the next few months, the committee prepares

detailed core domestic analysis for program commodities, projections for livestock and other non-program
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commodities, and commodity projections for foreign countries. ERS economists then prepare the sector-

wide projections for farm income and agricultural trade in January before publication of the baseline

report in February.

FAPRI also produces 10-year baseline projections for the U.S. agricultural sector every year. Over

the years, the FAPRI baseline procedures have evolved to include five main steps, as outlined in Meyers

et al. (2010). First, FAPRI personnel update baseline models, data, and assumptions to include the

November World Agricultural Supply and Demand Estimates (WASDE) and the latest macro-economic

projections. Second, FAPRI analysts deliberate and produce preliminary baseline projections in late

November. Third, the initial projections are subject to peer review from analysts from government and

international agencies, agribusinesses, and other universities. Fourth, in mid-January, FAPRI analysts

revise the preliminary baseline projections based on comments received during the peer review and

update the WASDE and macroeconomic projections. Fifth, the baseline projections are finalized, and

a briefing is provided to the U.S. Congress, after which the FAPRI baseline is released to the public.

Meyers and Westhoff (2010) stress that the “FAPRI approach” of producing the baseline projections

focuses on developing good models, while underlining their use by skilled analysts.

Agricultural baselines produced by USDA and FAPRI are widely used in farm policy debates, par-

ticularly as they relate to farm bills and other legislation affecting the agricultural sector. Both agencies

play an advisory role in providing long-term budgetary estimates to policymakers and program adminis-

trators. It is important to note that one set of baseline projections examined are produced by the USDA,

a department of the executive branch of the U.S. Federal government, while the other set is produced

by a research institute housed at a Land Grant university. FAPRI was established by the U.S. Congress,

part of the legislative branch. Thus, our work is complimentary to previous studies that evaluate fore-

casts produced by agencies from different branches of the Federal government (for a recent review, see

Ericsson and Martinez, 2019).

As previously stated, U.S. agricultural baseline projections have not been rigorously evaluated, despite

their role in shaping agricultural policy. There are a few recent exceptions. Irwin and Good (2015)

question the use of USDA baseline projections in Farm Bill program choice decisions by demonstrating

that corn, soybeans, and wheat price projections tend toward a steady state, leading to high projection

errors. Westhoff (2015) extends the analysis in Irwin and Good (2015) to the FAPRI baselines and finds

that the projection errors are similar to the USDA baselines across commodities. Irwin and Good (2015)

and Westhoff (2015) also compare the commodity price baselines with season-average prices derived

from futures markets. In addition, Boussios, Skorbiansky, and MacLachlan (2021) show that USDA

baseline projections consistently under-estimate corn harvested area and over-estimate wheat harvested

area. Finally, Kuethe, Bora, and Katchova (2021) compare the current year projections of US net

cash income and its components to ERS’s forecasts released in the same month. The study suggests
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that USDA baseline projections outperform ERS forecasts for government payments and farm-related

income. While Kuethe, Bora, and Katchova (2021) underline the potential of USDA baseline projections

for short-run predictions, the study examines only current year projections, ignoring all other horizons.

3 Data and Descriptive Analysis

3.1 Data

We examine a set of agricultural baseline projections from both the USDA and FAPRI from 1997 to

2020. Both organizations publish their projections in a similar format. The baseline projections include

the most recent USDA estimate at the time of publication, provisional USDA estimates for the previous

year, and projections for the year of the current release and the next nine years. For example, the

February 2020 USDA baseline report contains realized estimates for 2018, provisional estimates for 2019,

and projections for 2020–2029. For some aggregate indicators, such as farm income, the baselines report

calendar year values, while for commodities, they report marketing year values.

In this study, we examine two main series of projections in the baseline reports. First, we examine

the projections of bottom-line net cash income and its components, which include crop receipts, livestock

receipts, direct government payments, farm-related cash income, and cash expenses. Net cash income

is a sector-wide measure of cash earnings generated by farms that can be used to meet a wide range of

obligations, including debt payments (McGath et al., 2009). It is defined as gross cash income less cash

expenses. Gross cash income includes crop and livestock cash receipts, direct government payments, and

farm-related income. Direct government payments are limited to federal government funds paid directly

to farmers to support farm incomes, conserve natural resources, or compensate for natural disasters

(McGath et al., 2009). Farm-related income includes machine hire and custom work, forest products,

and other income from farm output and sales. Net cash income is calculated from its components using

a bottom-up approach as per the accounting equation:

Net cash income =(Crop receipts + Livestock receipts + Cash farm-related income

+ Direct government payments)− Cash expenses.

(1)

Second, we analyze the projections of harvested acres, farm price, and yield for three commodities:

corn, soybeans, and wheat. Together, these three field crops constituted about 70% of the principal crops

area planted in the US in 2020 (USDA NASS, 2021).1 The projections are averages for the marketing

years, which differ by crop. The marketing year for corn begins on September 1 and comprises four

quarters. For example, the marketing year 2020/21 for corn and soybeans starts on September 1, 2020,

and ends on August 31, 2021. The 2020/21 marketing year for wheat begins on June 1, 2020, and ends
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on May 31, 2021. It is important to note that, as a result, the estimates for the current year are still

provisional, as the marketing years for the various crops have yet to conclude. Similarly, the farm income

estimates for the current year will be finalized in August.

We compile our dataset from multiple online sources. The Albert R. Mann Library at Cornell

University maintains an electronic archive of USDA baseline projections since 1997 (USDA ERS, 2021b).

The majority of FAPRI baseline reports were obtained from the FAPRI website (FAPRI, 2021). For

some early years, the baseline reports are available from the Iowa State University Digital Repository

(Iowa State University, 2021).2 The realized estimates for farm income indicators are taken from ERS’s

website (USDA ERS, 2021a). As mentioned in the previous discussion, the baseline reports also publish

the realized values for two years before the release year. However, the realized estimates reported in the

baseline report are subject to periodic adjustment as new information becomes available from multiple

USDA agencies, such as the Census of Agriculture conducted once every five years. Therefore, instead

of choosing the USDA or FAPRI release of realized estimates in their baseline reports, we use the most

up-to-date information available at the ERS’s website. Similarly, realized values for harvested acres,

farm price, and yield of corn, soybeans, and wheat are obtained from the NASS Quickstats application

programming interface (API) (USDA National Agricultural Statistics Service, 2021).

For each reference year (calendar or marketing year), we define Yt as the realized value for year t for

farm income and harvested acres, farm price, and yield for corn, soybeans, and wheat. We use the log

transformations of the realized values: yt = ln (Yt) to eliminate the impact of changing forecast levels,

following Isengildina-Massa et al. (2021). A projection made in year t for future year t + h (at horizon

h) by organization i = {USDA,FAPRI} is denoted Ŷ it+h|t. Again, we express the projection in natural

logarithms of the variables for our analysis: ŷit+h|t = ln (Ŷ it+h|t). The projection horizon h can take values

between h = 0 for the projection made during the reference year t and h = 9 for projections made for

year t+ 9. Again, for example, the 2020 baseline includes projections for 2020 (h = 0) to 2029 (h = 9).3

It is important to note that our dataset spans the baseline projections between 1997 and 2020, yet

the evaluation period T differs for each projection horizon. The evaluation period for 0 years ahead

horizon projections (h = 0) starts in 1997, and runs through 2020, resulting in a sample size of T = 24

observations. We lose one year from our sample size T for each year increase in the projection horizon

h. For example, for h = 1, the length of the evaluation period is T = 23, as 1-year-ahead projections

were not produced for the year t = 1997. Similarly, the sample size reduces to T = 15 observations for

9-years-ahead projections (h = 9), as h = 9 projections are available for the years 2006 to 2020. Figure 1

plots the baseline projections of net cash income and average farm prices of corn for the USDA and

FAPRI reports between 1997 and 2021. As can be seen in the figure, the baseline projections are usually

smoothed, particularly over longer horizons, and often fail to capture market shocks.

[FIGURE 1 ABOUT HERE]
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3.2 Accuracy and Bias

Accuracy measures the difference between realized and predicted values. For each variable, the percent

prediction error at horizon h is defined as: eit+h|t = 100× (Yt+h − Ŷ it+h|t)/Yt+h, where t is the reference

year and i = {USDA,FAPRI}. We use two common measures of the relative accuracy of USDA

and FAPRI projections: mean absolute percent error (MAPE) and root mean squared percent error

(RMSPE) defined as,

MAPEih =
1

T

∑
t

|eit+h|t| (2)

and

RMSPEih =

√
1

T

∑
t

(eit+h|t)
2. (2’)

As MAPE is less susceptible to outliers, it is unaffected by the occasional large prediction errors. RMSPE,

on the other hand, measures the square root average of squared errors and gives more weight to large

prediction errors. Smaller MAPE or RMSPE values suggest more accurate projections.

In addition, we examine the degree to which the projections consistently differ from their realized

values (bias) using the regression-based test of Holden and Peel (1990). For each series of projections,

we test for bias at each horizon h = {0, 1, . . . 9}:

eit+h|t = αih + εit+h. (3)

where αih is an unknown constant to be estimated and εit+h is white noise regression residual. The pro-

jections are unbiased if they do not consistently differ from realized values, or alternatively, their percent

prediction error has an expected value of zero. We evaluate the null hypothesis that the projections

are unbiased by testing the regression constraint H0 : αih = 0. A positive and significant coefficient α̂ih

would suggest that the USDA or FAPRI projections consistently under-predict realized values. Simi-

larly, a negative and significant coefficient α̂ih implies that the projections systematically overestimate

the realized values. For both USDA and FAPRI projections, we estimate equation (3) separately for

each projection horizon h using ordinary least squares (OLS) with heteroskedasticity and autocorrelation

consistent (HAC) standard errors (Newey and West, 1987).

Figures 2 and 3 plot the mean absolute percent error (MAPE, solid line) and root mean square

percent error (RMSPE, dotted line) of the projections for field crop production and prices (figure 2) and

net cash income and its components (figure 3) from 1997 through 2020. The vertical axis represents the

MAPE and RMSPE, and the horizontal axis represents the projection horizon h, from 0 to 9.

[FIGURE 2 ABOUT HERE]

As shown in figure 2, both MAPE and RMSPE increase with the projection horizon for harvested
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acres and farm price of corn, soybeans, and wheat for both USDA and FAPRI projections. This pattern,

however, does not hold for crop yield projections. Corn yield projections exhibit smaller and more

stable MAPE and RMSPE, and MAPE and RMSPE for wheat yields decreases across the projection

horizon h. The stable or decreasing percent errors may be the result of small deviations in crop yields

from long-term upward trends. Further, figure 2 suggests limited differences between USDA and FAPRI

commodity price and production projections.

[FIGURE 3 ABOUT HERE]

Figure 3 shows that projection errors for net cash income and its components increase with the

horizon h. In addition, projection errors for net cash income, crop receipts, and livestock receipts are

lower for the FAPRI baseline at shorter horizons, while USDA baseline projection errors are lower at

longer horizons. For farm-related income, the FAPRI projection has lower errors for all horizons.

The tests of bias for both commodity and net cash income projections show a similar pattern as

reported in previous studies of USDA forecasts. In tables 1 and 2, we report the estimates of bias α̂ih

for projections i = {USDA,FAPRI} at horizon h from equation (3) along with HAC standard errors.

As reported in Boussios, Skorbiansky, and MacLachlan (2021), the USDA baselines consistently under-

predict soybean harvested acres and over-predict wheat harvested acres. The magnitude of bias increases

with the projection horizon h. Corn harvested acres do not show such bias. Farm prices of the three

commodities do not show significant bias for shorter horizons, but they tend to be under-predicted for

horizons larger than four years. Crop yield predictions do not show significant bias for any of the three

commodities. Both FAPRI and USDA projections of net cash income, crop receipts, livestock receipts,

and cash expenses are biased downward at a 5% significance level, and the magnitude of bias increases

with the horizon. This finding is consistent with previous findings of downward bias in USDA net cash

income forecasts, which can be compared with projections at horizons h = {0, 1} (Kuethe, Bora, and

Katchova, 2021; Isengildina-Massa et al., 2021). As the short-term, one year USDA forecasts are an

input for short-term baseline projections, it is not surprising that baselines are also biased downward,

and that the bias carries forward to longer horizons. USDA projections of government payments show

downward bias at longer horizons, while FAPRI projections of government payments do not show bias.

Farm-related income projections are biased downward at longer horizons for both FAPRI and USDA

projections.

[TABLE 1 ABOUT HERE]

[TABLE 2 ABOUT HERE]
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4 Methods

The analysis of accuracy and bias in the previous section suggests that the projections are less accurate

at longer horizons. We conduct tests for the predictive accuracy of the projections at different horizons

and determine the maximum informative projection horizon for each variable (Breitung and Knüppel,

2021). We then compare the USDA and FAPRI baseline models using multi-horizon tests developed by

Quaedvlieg (2021).

4.1 Informativeness

The accuracy and bias measures consider the projections at each horizon independently. The baseline

projections, however, are multi-horizon forecasts or path forecasts, as in Jordà and Marcellino (2010).

An important evaluation criterion for path forecasts is the horizon up to which the projections provide

meaningful information. Galbraith (2003) calls the maximum informative horizon of a path forecast the

content horizon. A number of previous studies develop empirical tests to estimate the content horizon

of path forecasts relative to an uninformative or näıve forecast (Galbraith and Tkacz, 2007; Isiklar and

Lahiri, 2007).

A popular measure used for quantifying information content is the Theil’s U statistic (Theil, 1958).

Theil’s U is a scaled version of the root mean square error (RMSE) that has the advantage of not being

affected by the variance of the actual process. It is defined:

U ih(ŷnaïve) =

√√√√∑T
t=1(yt+h − ŷit+h|t)2∑T
t=1(yt+h − ŷnaïve)2

(4)

A common choice for the näıve projection, ŷnaïve, is a no-change projection using the previous year’s

estimate. Following Isiklar and Lahiri (2007), we use the previous 5-year’s average as the näıve projection,

and calculate U ih(ŷnaïve) for our selected variables for each horizon h = {0, 1, . . . 9}, and agency i =

{USDA,FAPRI}. If Theil’s U is less than one, then the baseline is a better predictor than the näıve

projection. Conversely, when the näıve benchmark is a better predictor than the agency baseline, Theil’s

U is larger than one.

The choice of the näıve projection ŷnaïve greatly influences the Theil’s U statistic. As a result, we

also estimate the informativeness or content horizon for the agricultural baselines using a method re-

cently proposed by Breitung and Knüppel (2021), which does not require a näıve forecast for comparison.

Instead, the Breitung and Knüppel test directly compares the mean-squared forecast error to the uncon-

ditional variance of the forecasted variable. The Breitung and Knüppel testing framework is based on a

limited set of assumptions. The test assumes that the realized values yt are generated by a stationary

and ergodic stochastic process. We further assume that the realized values yt are generated by a linear

process with constant variance, although this assumption may be relaxed in some conditions.
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The Breitung and Knüppel test for the maximum informative prediction horizon compares the mean-

squared prediction error of the projections to the variance of the realized values over the evaluation

sample. Under quadratic loss, the optimal projection equals the conditional mean of the projection

µih,t = E(ŷit+h|It), given the information set It available at reference year t. In particular, we test the

following hypothesis:

H0 : E(yt+h − ŷt+h|t)2 ≥ E(yt+h − µ)2, for h > h∗ (5)

H1 : E(yt+h − ŷt+h|t)2 < E(yt+h − µ)2 (6)

where, µ = E(yt) is the unconditional mean of the realized values. The null hypothesis states that there

exists a maximum projection horizon h∗ beyond which the realized values yt would be unpredictable with

respect to the information set It. We term the null hypothesis as no information hypothesis, against

the alternative hypothesis, which states that the projection remains informative as the mean-squared

prediction error is lower than the variance of the realized values around their unconditional mean.

Another test of predictive content can be formulated based on the conditional mean of the projection

being constant within the evaluation sample, or the constant mean hypothesis:

H0 : E(ŷit+h|It) = µh,t = µ, for h > h∗ (7)

H1 : E(ŷit+h|It)6=µh,t = µ. (8)

This is a more relaxed criterion compared to the no information hypothesis as it requires the projection

to be uncorrelated with the realized value for it to be uninformative. If the projection ŷit+h|t is identical

to the conditional mean µh,t of the target variable, then the no information hypothesis is equivalent to

the constant mean hypothesis (Breitung and Knüppel, 2021).

Breitung and Knüppel (2021) suggest considering three scenarios based on how the projections are

generated. The first scenario refers to projections generated from the expectations of individuals, and

the expectation is identical to some conditional mean. The second scenario involves projections gener-

ated from survey expectations which are also contaminated by noise (e.g., macro-economic forecasts of

Consensus Economics). The third scenario refers to projections generated from models. The baseline

projections we consider here are unique in the sense that they are generated based on models, as well

as expert opinions or expectations of individuals. Therefore, we consider the second and third scenarios.

In both scenarios, the no information hypothesis and the constant mean hypothesis can be formulated

in terms of testing coefficients in a Mincer-Zarnowitz regression (Mincer and Zarnowitz, 1969).

Breitung and Knüppel (2021) show that if the baseline projection is generated by a conditional mean

of the projection and noise (ηt), ŷ
i
t+h|t = µh,t+ηit, the no information hypothesis is equivalent to testing
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the null hypothesis βih ≤ 0.5 in the regression:

yit+h = βi0,h + βihŷ
i
t+h|t + νit+h. (9)

Breitung and Knüppel (2021) further show that the constant mean hypothesis is equivalent to testing the

null hypothesis βih ≤ 0 in the same regression, implying that the baseline projection is uncorrelated to

the realized values. The tests of the parameters βih can be performed using a HAC t-statistic constructed

as:

τa =
1

ω̂a
√
T

∑
t

at (10)

at =
[
yt+h − yt+h − 0.5(ŷt+h|t − ŷt+h)

]
(ŷt+h|t − ŷt+h) for H0 : βh = 0.5 (11)

at = (yt+h − yt+h)(ŷt+h|t − ŷt+h) for H0 : βh = 0 (12)

where ω̂a
2 is a consistent estimator of the long-run variance of at. The Lagrange Multiplier statistic has

an asymptotic standard normal distribution.

While constructing the HAC t-statistic, we use the in-sample mean of the baseline projections. While

alternative versions of the test use a recursive mean in place of the in-sample mean, they require more

information prior to the evaluation period, which is not available in our case. To determine the maxi-

mum informative projection horizon h∗, we begin by testing the null hypothesis for the h = 0 horizon

projection. If the null hypothesis is rejected, we test the h = 1 horizon projection, and so on. We stop

when the null hypothesis is no longer rejected. The maximum informative projection horizon h∗ is the

penultimate horizon before the null hypothesis is not rejected.

An advantage of the tests proposed by Breitung and Knüppel (2021) is that they do not require

a näıve benchmark, as they directly compare the mean-squared prediction error to the unconditional

variance of the realized values. Another advantage is that when we apply the tests with in-sample mean,

additional information prior to the evaluation period is not required, therefore these tests are suitable for

our limited observation period. The baseline projections share properties of both survey forecasts and

model-based forecasts, as they are a combination of model prediction and expert opinions. On the other

hand, a limitation of these tests is that they can be sensitive to the transformations of the variables. In

addition, the maximum information projection horizon is a conservative estimate and is subject to the

process used to produce the projections. The maximum informative projection horizon could be longer

if the projection process did not fully incorporate available information. Another limitation is that the

tests at longer projection horizons may have less power due to smaller sample size.
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4.2 Comparing USDA and FAPRI Baseline Projections

4.2.1 Multi-horizon Comparison

The final step in our evaluation compares the relative accuracy of the baseline projections produced

by USDA and FAPRI. First, we follow the forecast comparison test procedure developed by Harvey,

Leybourne, and Newbold (1997) for each projection at each horizon. The Harvey, Leybourne, and

Newbold (1997) test is a modified version of the test procedure introduced by Diebold and Mariano

(1995) which incorporates a modified student t distribution and bias correction to improve small sample

properties of the tests. The comparison of the USDA and FAPRI projections is based on the mean loss

differential between them, µ = limT→∞
1
T

∑
tE(dt).

The modified Diebold-Mariano tests for single horizons compare the USDA and FAPRI projections

by calculating a standard t-test:

thDM =

√
T d̄h
ω̂h

(13)

where d̄h = 1
T

∑
dt,h, and ω̂2

h is a HAC estimate of the variance of dt,h. We first test the null hypothesis

that the mean loss differential at horizon h is less than or equal to zero (H0 : µh ≤ 0). A failure to reject

the null hypothesis of µh ≤ 0 suggests that the FAPRI projections do not perform better than USDA,

and a rejection of the null would indicate that the FAPRI projections perform better than USDA. We

then test the null hypothesis that the mean loss differential at horizon h is greater than or equal to zero

(H0 : µh ≥ 0). For this test, a failure to reject the null hypothesis of µh ≥ 0 would indicate that the

USDA projections do not perform better than FAPRI, and a rejection of the null would indicate that

the USDA projections perform better than FAPRI.

The modified Diebold-Mariano test compares the USDA and FAPRI projections at each horizon. As

a result, the test may yield contradictory results for multi-horizon projections, as one set of projections

may provide more accurate projections at some horizons but not at others. This shortcoming may limit

the use by policymakers who are interested in the relative accuracy of the entire path forecast from

horizons 0 through 9. As a result, we also examine the relative accuracy along the entire projection

path.

A number of recent studies propose methods to compare the relative accuracy of path forecasts

(Capistrán, 2006; Patton and Timmermann, 2012; Martinez, 2020). In our analysis, we use the tests

of multi-horizon superior predictive ability proposed by Quaedvlieg (2021) which jointly consider all

horizons along the entire projection path. Following Giacomini and White (2006), the procedure de-

veloped by Quaedvlieg (2021) tests for finite-sample multi-horizon predictive ability using estimated

values of parameters. To conduct multi-horizon comparison tests, we start by using a vectorized ver-

sion of the previous notations, denoting the USDA and FAPRI projections i ∈ {USDA,FAPRI} as,

ŷit = [ŷit|t−0, ŷ
i
t|t−1, . . . , ŷ

i
t|t−9], where ŷit|t−h is the projection of yt based on the information set at time
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t−h. We are interested in comparing the USDA and FAPRI projections in terms of their loss differentials,

following the approach in Diebold and Mariano (1995). We assume a general loss function Lit = L(yt, ŷ
i
t)

which maps the prediction errors into a 10-dimensional vector since there are 10 projection horizons. For

our analysis, we use mean squared error (MSE) and mean absolute error (MAE) loss function, however,

these can be generalized to allow multivariate loss function. We calculate the loss differential for year t

between the USDA and FAPRI projections as a 10-dimensional vector:

dt = LUSDAt −LFAPRIt . (14)

Quaedvlieg (2021) provides two alternative definitions of multi-horizon predictive ability. First, a path

forecast is said to have uniform superior predictive ability (uSPA) if it has smaller loss at each horizon

when compared to the alternative path forecast. Uniform SPA, however, is a very strict criterion which

may not be realistic in practice. As a result, Quaedvlieg (2021) develops the concept of average superior

predictive ability (aSPA) for a path forecast with larger loss at some horizons that is compensated by

superior performance at other horizons when compared to the alternative path forecast. Thus, average

SPA relaxes the stringent requirements of uniform SPA. Quaedvlieg construct bootstrap test statistics

for both uniform and average SPA, which reduce to the standard DM tests at a single horizon.

The uniform SPA test is based on the minimum loss differential:

µuSPA = min
h
µh. (15)

The uniform SPA test is given by the null hypothesis H0 : µuSPA ≤ 0 against the alternative hypothesis

Ha : µuSPA > 0. Rejecting the null hypothesis will suggest that the FAPRI projection has uniform

superior predictive ability over the USDA projection. In other words, the minimum loss differential

between the USDA and FAPRI projection across horizons h should be significantly greater than zero

if the FAPRI projection is to be uniformly superior to the USDA projection. To test for uSPA of the

USDA projection over FAPRI, we use the same equation (15) for minimum loss differential but reverse

the two projections in the loss differentials equation (i.e. dt = LFAPRIt −LUSDAt ). In this case, rejecting

the null hypothesis will suggest that the USDA projection has uniform superior predictive ability over

the FAPRI projection.

The average SPA test, by contrast, is based on a weighted average of losses across all horizons

or whether, for example, the FAPRI baseline projection is on average superior to the USDA baseline

projection across all horizons. The average SPA test is based on the minimum loss differential:

µaSPA = w′µ =
∑
h

whµh. (16)
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The average SPA allows losses at different horizons to compensate for one another. For example, the

FAPRI projection may perform worse at some horizons but still be superior compared to the USDA

projection, on average. We test the null hypothesis H0 : µaSPA ≤ 0 (FAPRI projection does not

have aSPA) against the alternative Ha : µaSPA > 0 (FAPRI projection has aSPA). We also test the null

hypothesis H0 : µaSPA ≥ 0 (USDA projection does not have aSPA) against the alternative Ha : µaSPA >

0 (USDA projection has aSPA).

The choice of weights (wh) is flexible but is chosen a priori. To make sure our findings are robust

to this choice, we examine alternative weighting procedures. We first use equal weights for each horizon

h but also consider weighing the loss differentials by the variance of the loss differential at the horizon

that is being compared divided by the sum of variances across all horizons. The test statistic for the

multi-horizon comparison tests are given by:

tuSPA = min
h

√
T d̄h
ω̂h

(17)

and,

taSPA =

√
T d̄h

ζ̂h
, (17’)

respectively. For the uSPA tests, we calculate two t-statistics: one testing whether the FAPRI projection

has uSPA over the USDA and the other testing whether the USDA projection has uSPA over FAPRI, as

the minimum loss differentials are different for these two hypotheses. However, for the aSPA tests, we

need to calculate only one t-statistic and conduct one-tailed tests in both directions to test aSPA of the

FAPRI projection over USDA and vice versa.

We obtain estimates of variances ω̂2
h for uSPA from the diagonal elements of the covariance matrix of

loss differential d calculated using an HAC-type estimator (Newey and West, 1987). Similarly, we get the

estimates of variance ζ̂2
h for aSPA as the diagonal elements of the weighted covariance matrix of d. The

test-statistic for the uniform SPA is the minimum of Diebold-Mariano test statistic for all horizons. The

average SPA test is simply a Diebold-Mariano test on average loss differential (Quaedvlieg, 2021). The

critical values and p-values for the uSPA and aSPA tests are obtained using a moving block bootstrap

(MBB) technique. By computing either of the test statistics on many MBB re-samples, we approximate

the distribution of the original statistics under the null hypothesis. The critical values at α significance

level are obtained by calculating the α percentile of the bootstrap distribution.

4.2.2 Encompassing Tests

As previously stated, USDA baseline projections are typically released in February and FAPRI baseline

projections in March. As a result, FAPRI analysts have the advantage of using more recent information

to prepare their projections. The updated information set of the FAPRI analysts includes information
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from reviewer comments, the January WASDE and associated reports, and the February USDA farm

income estimates. In comparison, the USDA baseline projections are based on the October WASDE

(USDA Office of the Chief Economist, 2020). Therefore, one might expect the FAPRI baseline projec-

tions to contain new information beyond the USDA baseline projections. On the other hand, there is a

bi-directional flow of information between USDA and FAPRI analysts through official meetings, review

sessions, and informal conversations, which may lead to herding in the projections produced by both

agencies. FAPRI usually finalizes its projections by the time USDA releases its report, and the USDA

report does not act as a significant input to FAPRI’s forecasting process. We test whether the informa-

tion content of USDA or FAPRI baseline projections dominates the other using the encompassing test

developed by Harvey, Leybourne, and Newbold (1998).

When two competing sets of projections are available for the same variable, a relevant question to

ask is whether one set of projections encompasses another, that is, the informational content of the

preferred projection dominates the other. Harvey, Leybourne, and Newbold (1998) frame this question

as a problem of forming a combined projection from the weighted average of the individual ones and

estimating the optimal weights assigned to each projection. In this framework, a projection would be

preferred if its optimal weight is unity in the weighted average, and the combined projection consists

entirely of the preferred projection. Harvey, Leybourne, and Newbold (1998) develop a regression-based

test to estimate the optimal weights for the combined projection. For our study, the regression is

expressed as:

eUSDAt+h|t = αh + λh(eUSDAt+h|t − e
FAPRI
t+h|t ) + εt+h|t. (18)

where eUSDAt+h|t is the prediction error at horizon h of USDA baselines, and eFAPRIt+h|t is the prediction error

at horizon h of FAPRI baselines projections. The coefficients αh and λh at horizon h are estimated by

OLS regression, and εt+h|t is a white noise regression error.

The coefficient λh in the regression equation (18) determines the optimal weights assigned to the

USDA and FAPRI projections to form a combined projection that would have a smaller expected squared

error than either of the two projections. The combined projection is formed by assigning weights (1−λh)

and λh to the USDA projections and FAPRI projections, respectively. We test the null hypothesis that

USDA baselines encompass the FAPRI projections using a two-tailed t-test of the restriction λh = 0. If we

fail to reject λ = 0, it implies that USDA is preferred to FAPRI (i.e., the combined projection consists

entirely of the USDA baseline). Alternatively, we test the hypothesis that the combined projection

consists entirely of the FAPRI baseline by using a two-tailed t-test of the restriction λh = 1. A failure to

reject λh = 1 would suggest that the FAPRI baseline is preferred. If we reject both λh = 0 and λh = 1,

a combined projection is formed by weighting FAPRI baseline by λ̂h and USDA baseline by (1− λ̂h). In

this case, both baselines contain unique information to contribute to the combined projection. Finally,

if we fail to reject both λh = 0 and λh = 1, the optimal composite projection can be either the USDA or
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the FAPRI baseline, as the projections are very similar. We perform encompassing tests for our selected

variables for each horizon separately.

5 Results

The following section presents the primary findings of our analysis. First, we measure the accuracy of

USDA and FAPRI baseline projections for major field crops, as well as U.S. net cash farm income and

its components, and test for bias. Second, we estimate the content horizon of each set of projections.

Finally, we empirically test the degree to which USDA or FAPRI has superior predictive ability.

5.1 Informativeness

The Theil’s U statistic for the commodities and net cash income components are plotted in figures 4 and

5 for USDA and FAPRI baselines. As previously discussed, Theil’s U compares the predictive accuracy

of FAPRI or USDA baseline projections relative to a näıve prior based on a 5-year moving average,

following Isiklar and Lahiri (2007). The USDA or FAPRI baseline projection is a better predictor than

the näıve prior if Theil’s U is less than 1, which is represented by the horizontal dashed line in figures 4

and 5. Both USDA and FAPRI projections are better predictors of corn harvested acres across all

horizons, relative to the näıve prior. However, for harvested acres of soybeans and wheat, the näıve prior

is preferred at longer horizons. The predictive accuracy of both FAPRI and USDA baseline projections

relative to the näıve prior diminish at longer horizons for all farm price projections. Interestingly, yield

projections perform better for both agencies at larger horizons relative to the näıve projection. For net

cash income, FAPRI baselines are preferred to the näıve prior for at shorter horizons, yet the näıve prior

is preferred to USDA baseline projections beyond the reference year projections. For both crop and

livestock receipts, USDA and FAPRI baseline projections are preferred to the näıve prior at all horizons.

The projections of government payment, on the other hand, fail to beat the näıve beyond the current

year for both agencies. Overall, Theil’s U statistics suggest that the baselines beat the näıve projection

for most variables across horizons, underlining that baselines contain information. We investigate the

informativeness of the baselines further with our empirical tests of predictive content.

[FIGURE 4 ABOUT HERE]

[FIGURE 5 ABOUT HERE]

Our estimates of the content horizon of each projection series, following Breitung and Knüppel (2021),

are presented in tables A.1 and A.2. As previously discussed, the empirical test of Breitung and Knüppel

(2021) is based on the traditional Mincer-Zarnowitz regression (equation (9)). The two hypotheses tested

are H0 : βih ≤ 0.5 for no information and H0 : βih ≤ 0 for constant mean.
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As shown in tables A.1 and A.2, the estimates of β̂ih are closer to unity for shorter horizons, but

decrease for longer horizons. For example, for the USDA projections of corn harvested acres, the estimates

of β̂USDAh decrease from 0.98 for the next year projection (horizon h = 1) to 0.07 for the ten years ahead

projection (h = 9), which suggests a reduction in the predictive content of the USDA projections at

longer horizons (table A.1). Similarly, for the FAPRI projections of corn harvested acres, the estimates

of β̂FAPRIh decrease from 0.996 for horizon h = 1 to −0.044 for h = 9 (table A.2). The statistical

significance of the coefficients tested with a one-tail test show that the projections for corn harvested

acres become uninformative after h = 5 and then constant mean after h = 7 .

We further plot the p-values for the no information and constant mean tests for predictive content

against the projection horizon h for the commodities and net cash income components in figures 6 and

7. The horizontal dashed line stands for significance at a 5% level. These figures mirror and confirm the

results in tables A.1 and A.2. In general, the results show that yield is better predicted than harvested

acres, which is better predicted than farm price in terms of becoming uninformative and constant mean

at longer horizons.

[FIGURE 6 ABOUT HERE]

[FIGURE 7 ABOUT HERE]

Finally, we calculate the maximum informative projection horizons h∗ for both tests at a 5% signif-

icance level in table 3. The maximum informative projection horizon is calculated as the penultimate

horizon, after which the null hypothesis is not rejected for the first time. For example, using the no

information hypothesis test, h∗ = 5 for corn harvested acres projections by both USDA and FAPRI as

no information test is significant at 5% level until h = 5. Similarly, using the constant mean hypothesis

test, h∗ = 7 for corn harvested acres projections by both USDA and FAPRI as no information test is

significant at 5% level until h = 7. Because β̂ih are generally decreasing with the horizon h and the

no information hypothesis tests whether the coefficient estimate is less than 0.5 versus the constant

mean hypothesis that tests whether the coefficient estimate is less than 0, the results imply that the no

information hypothesis is not rejected at shorter horizons than the constant mean hypothesis. In other

words, projections for the shortest horizons are both informative and do not have constant mean, and

for medium horizons, the projections become uninformative. For the longest horizons, the projections

are also constant mean.

[TABLE 3 ABOUT HERE]

For most variables, the informative content of the projections starts diminishing after 4-5 years from

the current year, using the more conservative no information test results. These results vary greatly

across variables. Both USDA and FAPRI are able to predict yield per acre for the longest horizons of 9
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years ahead, with reduced predictive ability for harvested acres of about 5-7 years ahead and the lowest

predictive for farm price of only 2-4 years ahead. These results are not surprising because predicting yield

around a long-term trend has proven to be easier than predicting farm prices, which are more volatile.

The bottom-line net cash income also remain informative 4-6 years into the future, while some individual

components such as crop receipts and cash expenses generally remain informative for shorter horizons

of about 2 years. Government payments are notably difficult to predict even in the current year and are

not informative after the current year, consistent with previous studies (Isengildina-Massa et al., 2021;

Bora, Katchova, and Kuethe, 2021). The findings, however, do not suggest that the projections cannot

be improved beyond the reported maximum horizon, as our test results are subject to the projection

process. Our results only suggest that the projections may stay informative for a longer period using

improved models.

There may be several explanations why a variable might not stay informative beyond a few years.

It may be that the variable under examination is difficult to predict. For example, it is not surprising

that the government payments do not stay informative beyond the current year, as policy decisions

are often unpredictable. The opposite is true for crop yield projections, where even a linear trend

model may predict future yield with low percent errors. Our findings of a short content horizon would

suggest that the projection may be improved by using better projection models, more rigorous review

processes, and robust information sets. However, errors in the baseline projections may come from two

distinct sources. First, the assumptions about macro-economic conditions, weather, trade policies while

producing the baselines may not be realized in the future. Second, even if correct assumptions were made,

the models used in the projections may be inadequate or inaccurate. Our tests of predictive content do

not pinpoint whether a short content horizon may result from incorrect assumptions or incorrect models

and analysis, and would merely suggest that future revisions of the baselines should try to improve both

the assumptions and the modeling process. The same limitation applies to other tests used in this study.

5.2 Comparing USDA and FAPRI Baseline Projections

We first compare the FAPRI and USDA baselines using the modified Diebold-Mariano (MDM) test of

Harvey, Leybourne, and Newbold (1997) using a root mean square error loss function (table A.3). For

this MDM test, we compare USDA and FAPRI projections at each horizon separately using the test

statistic from equation (13). We then perform multi-horizon uniform SPA test using the test statistic

from equation (17) to test whether the FAPRI projections perform better than the USDA projections or

whether the USDA projections perform better than FAPRI (table A.4). Then, we conduct two versions

of the average SPA test using the test statistic from the equation (17’). The first average SPA test

assigns equal weights to each horizon while calculating loss differentials (table A.5). Table A.6 presents

the results of the average SPA test using weights based on variances of loss differentials of the horizons.
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The multi-horizon tests of uniform SPA and average SPA are performed for all horizons up to h. Thus,

at the last horizon h = 9, we run the full version of the multi-horizon comparison test by including all

horizons. Figures 8 and 9 plot the p-values of the MDM test and the multi-horizon comparison tests.

[FIGURE 8 ABOUT HERE]

[FIGURE 9 ABOUT HERE]

The p-values of all four multi-horizon comparison tests for the commodities projections in figure 8

suggest that the FAPRI projections do not outperform the USDA projections for most variables, as we

cannot reject the null hypothesis. Notable exceptions are that the FAPRI projections perform better

than USDA for soybean harvested acres and wheat price. The multi-horizon comparison test results

shown in figure 9 suggest that the FAPRI projections perform better in shorter horizons (h ≤ 4) for

net cash income and crop receipts, while FAPRI consistently predicts better than USDA farm-related

income for all horizons h ≤ 9. One reason the FAPRI projections may perform better at shorter horizons

is that they use the most recent forecasts available in November as inputs to their projections, while

the USDA uses forecasts available in October. Also, USDA releases their projections a couple of weeks

earlier than FAPRI, so FAPRI may contain additional information, especially expert opinions. Since

expert opinions mostly influence shorter horizons of the projections, the FAPRI projections are better

for some variables. Additionally, the three multi-horizon comparison tests (uSPA, aSPA equal weights,

and aSPA variance weights) yield similar results, and the findings are consistent with the results of the

single-horizon MDM test.

The results of multi-horizon comparison tests in tables A.4, A.5, and A.6 provide additional insights

to the single-horizon MDM tests presented in table A.3. The MDM test results show that the FAPRI

projections perform better in shorter horizons for net cash income, crop receipts, and wheat price.

For farm-related income, the FAPRI projection performs better than USDA across the entire projection

horizon. The USDA projection performs better at longer horizons for corn price and yield, soybean price,

crop receipts, livestock receipts, and cash expenses. The multi-horizon tests, on the other hand, aggregate

the loss differential across multiple horizons. We start our multi-horizon tests with the projection for the

current year (h = 0) and progressively include additional horizons until we cover the entire projection

horizon (h ≤ 9). This allows us to observe how the addition of more horizons affects the results. For

shorter horizons, the multi-horizon tests yield similar results to the MDM test. However, as we keep

adding horizons, in a multi-horizon framework, the results differ from the single-horizon tests. For

example, the tests of uSPA in table A.4 show that, over the projection path (h ≤ 9), the FAPRI

projection performs better for farm-related income, whereas the USDA projection performs better for

corn price and soybean yield at 5% significance level. The tests of aSPA in table A.5 and A.6 yield

similar conclusions. Interestingly, the full-horizon (h ≤ 9) multi-horizon comparison tests do not suggest
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that either projection performs better than the other for net cash income, crop receipts, and livestock

receipts. The single-horizon tests in table A.3 show that the FAPRI projections perform better in shorter

horizons and the USDA projections perform better in longer horizons. As the multi-horizon tests consider

performance over the entire projection horizon, they conclude that neither the USDA nor the FAPRI

projection is superior to the other projection.

[TABLE 4 ABOUT HERE]

The estimates of optimal weight λ̂ of our encompassing tests in equation (18) is presented in table 4.

For corn, either the USDA and FAPRI baseline projections can generally be substituted for one another.

For soybean prices, USDA projections are preferred in the short term, while a composite projection can

be created by taking the weighted average of both projections at larger horizons (h = 7 to 9). The net

cash income projections of the FAPRI baseline are preferred in the shorter horizons (h = 1 to 3), while

USDA net cash income projections are preferred in the larger horizons (h = 7 to 9). This finding is

consistent with our multi-horizon comparison tests. The government payments of the USDA baseline

encompass the FAPRI projections over the length of the horizons. The composite projections created

using the encompassing weights are more accurate than either of the two projections (Kuethe, Bora, and

Katchova, 2021).

6 Conclusion

Both USDA and FAPRI baseline projections play an important role in shaping agricultural policy in

the U.S. The baseline projections provide a conditional scenario against which alternative policies can

be evaluated. In recent years, policymakers, agricultural businesses, and program administrators have

used these projections extensively in their policy and investment decisions. Given the importance of the

baseline projections in determining the long-term outlook of the farm economy, this study examines the

accuracy and informativeness of both sets of baseline projections using a number of forecast evaluation

techniques.

Our measures of prediction error show that the projections become less accurate as the projection

horizon increases, with crop yields being a notable exception. Our tests of bias suggest that the baselines

show similar bias as USDA’s short-term forecasts documented in the existing literature (Isengildina-Massa

et al., 2021; Bora, Katchova, and Kuethe, 2021), and the magnitude of the bias increases as the projection

horizon increases. This finding is not surprising given the fact that inputs for many baseline models come

from USDA forecasts, such as WASDE and farm income forecasts. Our tests of predictive content show

that the information content of most of the projected variables starts to diminish after 4-5 years from

the current year, with farm price projections becoming uninformative only after 2-3 years and yield

remaining informative for the entire projection horizon. The findings suggest that the projections may
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be improved using better models and processes. The single-horizon tests comparing the two projections

suggest that the FAPRI projections perform better at shorter horizons for net cash income and crop

receipts, potentially due to the updated information available to the FAPRI projection process, which

follows the USDA report by a few weeks. On the other hand, the USDA projection performs better

at longer horizons for corn price and yield, soybean price, crop receipts, livestock receipts, and cash

expenses. However, our multi-horizon comparison tests suggest that neither USDA nor FAPRI baselines

outperform one another for most projected variables if we consider the full projection path. A notable

exception is the FAPRI projection for farm-related income, which has uniform superior predictive ability

over the USDA projection. Similarly, the USDA projection for corn price and soybean yield has uniform

superior predictive ability over the FAPRI projection. For the rest of the variables, neither projection

performs better than the other.

The findings of this study also underline the importance of stochastic analysis while producing the

baselines. While the figures published in the baseline reports are point estimates, both the USDA and

FAPRI perform additional stochastic analysis to project distributions for different future scenarios. One

can expect the point estimates in the baseline reports to differ from actual values, as many of the

analysts’ assumptions may not realize. However, the stochastic analysis should account for such changed

scenarios, and actual values should ideally lie within the projected distribution. The agencies have not

always published the stochastic projections, or the stochastic projections have not received the same

attention from users. The agencies may consider releasing stochastic projections in addition to their

point projections to allow users to adapt the projections to different scenarios.

One limitation of our study is that some of our findings may be influenced by the projections made

in the previous decade(s) as opposed to more recent projections. The baseline models and processes for

both agencies have evolved and, hopefully, improved over time. The baseline projection process at both

agencies has also been subject to changes in personnel and information technology infrastructure. The

newer reports may have already addressed some issues related to bias or informativeness found in this

study. Given our small sample size, we cannot undertake sub-sample analysis to see if our estimates of

bias and informativeness remain steady over time.

Our findings provide valuable insights which may help improve the models and processes used to

produce the projections by each organization. Our tests of informativeness might be especially useful

for the desire to provide agricultural sector projections at longer horizons to examine issues related to

technology adoption or climate change. The balance between empirical models and the judgment of a

panel of experts employed by the baseline may also prove beneficial to other short-term USDA fore-

casts, including those of commodity production and trade. Furthermore, our findings provide important

information to various market participants who use these projections.

To our knowledge, this is the first study to look into the accuracy and usefulness of agricultural
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baselines. There are various directions in which agricultural baselines research could go in the future.

Using a more comprehensive information set is one way to enhance the projections. For example, distant

futures contract prices may be useful in projecting commodity prices, as suggested by Irwin and Good

(2015) and extending the approach of Hoffman et al. (2015) beyond one year. Future revisions of the

baseline projections may also benefit from examining the factors that may have contributed to systematic

deviations from observed values in the past, such as failures to anticipate the ethanol boom, the growth

in Chinese soybean demand, and Russia’s emergence as a major wheat exporter. Another option is to

improve the methodology, potentially using recent advances in machine learning.

Notes

1Crops included in area planted are corn, sorghum, oats, barley, rye, winter wheat, Durum wheat,

other spring wheat, rice, soybeans, peanuts, sunflower, cotton, dry edible beans, chickpeas, potatoes,

sugarbeets, canola, and proso millet.

2FAPRI baseline projections are available for a few additional years before 1997, but for comparison

with USDA, we limit our analysis to all years in which both sets of projections are available.

3In the forecast evaluation literature, projections made for h = 0 are sometimes referred to as nowcasts.
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(a) Net cash income realized values and baseline projections, 1997-2021

(b) Corn price realized values and baseline projections, 1997-2021

Figure 1: Net cash income and corn price realized values and baseline projections between 1997 and 2021

26



Figure 2: Mean absolute percent error (MAPE) and root mean square percent error (RMSPE) for
baseline projections of corn, soybeans and wheat by projection horizon h, 1997–2020
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Figure 3: Mean absolute percent error (MAPE) and root mean square percent error (RMSPE) for
baseline projections of net cash income and its components by projection horizon h, 1997–2020
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Figure 4: Theil’s U for USDA and FAPRI baseline projections of corn, soybeans and wheat by projection
horizon h, 1997–2020
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Figure 5: Theil’s U for USDA and FAPRI baseline projections of net cash income and its components
by projection horizon h, 1997–2020
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Figure 6: P-values for the tests of predictive content of the USDA and FAPRI commodity projections
by horizon, 1997–2020
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Figure 7: P-values for the tests of predictive content of the USDA and FAPRI farm income components
projections by horizon, 1997–2020
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Figure 8: Multi-horizon comparison tests of USDA and FAPRI commodity projections by horizon, 1997–
2020
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Figure 9: Multi-horizon comparison tests of USDA and FAPRI net cash income projections by horizon,
1997–2020
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Table 1: Estimates of bias in USDA baseline projections, 1997–2020

Projection horizon

h=0 h=1 h=2 h=3 h=4 h=5 h=6 h=7 h=8 h=9

Corn

Harvested acres −0.009 −0.001 0.008 0.011 0.015 0.021 0.028 0.035 0.043 0.054
(0.007) (0.009) (0.012) (0.014) (0.018) (0.021) (0.025) (0.027) (0.030) (0.031)

Farm price 0.049 0.080 0.095 0.113 0.136∗ 0.160∗∗ 0.181 0.207∗ 0.262∗∗ 0.322∗∗

(0.039) (0.069) (0.095) (0.084) (0.072) (0.069) (0.105) (0.098) (0.095) (0.129)
Yield −0.010 −0.008 −0.007 −0.006 −0.006 −0.005 0.000 0.002 −0.003 −0.002

(0.018) (0.020) (0.021) (0.022) (0.023) (0.023) (0.024) (0.024) (0.022) (0.023)
Soybeans

Harvested acres 0.008 0.028∗ 0.040∗∗ 0.055∗∗∗ 0.064∗∗∗ 0.072∗∗∗ 0.078∗∗∗ 0.085∗∗ 0.090∗∗ 0.098∗∗

(0.009) (0.016) (0.019) (0.018) (0.019) (0.020) (0.025) (0.030) (0.032) (0.034)
Farm price 0.104∗∗∗ 0.133∗ 0.147 0.164 0.184∗∗∗ 0.212∗∗∗ 0.236∗∗ 0.251∗∗∗ 0.302∗∗∗ 0.360∗∗∗

(0.036) (0.067) (0.092) (0.098) (0.060) (0.061) (0.097) (0.071) (0.081) (0.082)
Yield −0.002 −0.002 −0.002 0.002 0.005 0.005 0.009 0.019 0.018 0.016

(0.014) (0.016) (0.020) (0.021) (0.022) (0.024) (0.024) (0.022) (0.026) (0.032)
Wheat

Harvested acres −0.040∗∗∗−0.046∗∗−0.056∗−0.071∗−0.090∗∗−0.102∗∗−0.112∗∗∗−0.134∗∗∗−0.155∗∗∗−0.179∗∗∗

(0.008) (0.016) (0.028) (0.034) (0.038) (0.036) (0.031) (0.032) (0.030) (0.027)
Farm price 0.059 0.102 0.126 0.146∗ 0.166∗ 0.182∗∗ 0.189∗∗ 0.205∗ 0.240∗∗ 0.278∗

(0.047) (0.088) (0.101) (0.080) (0.094) (0.069) (0.084) (0.116) (0.112) (0.137)
Yield 0.019 0.018 0.016 0.015 0.015 0.016 0.027 0.025 0.026∗ 0.028∗

(0.015) (0.017) (0.015) (0.014) (0.013) (0.015) (0.017) (0.015) (0.014) (0.015)
Farm income

Net cash income 0.132∗∗∗ 0.194∗∗∗ 0.238∗∗∗0.267∗∗∗ 0.284∗∗∗ 0.288∗∗∗ 0.312∗∗∗ 0.330∗∗∗ 0.347∗∗∗ 0.376∗∗∗

(0.027) (0.041) (0.045) (0.038) (0.055) (0.065) (0.072) (0.088) (0.099) (0.096)
Crop receipts 0.036∗ 0.060 0.081 0.097∗∗∗ 0.113∗∗∗ 0.134∗∗∗ 0.152∗∗∗ 0.172∗∗∗ 0.198∗∗∗ 0.249∗∗∗

(0.020) (0.043) (0.055) (0.033) (0.015) (0.012) (0.026) (0.042) (0.036) (0.066)
Livestock receipts 0.022 0.042∗ 0.059∗∗ 0.072∗∗ 0.084∗ 0.096∗ 0.121∗∗ 0.147∗∗ 0.163∗∗ 0.189∗∗∗

(0.018) (0.023) (0.028) (0.033) (0.044) (0.049) (0.052) (0.053) (0.057) (0.058)
Govt. payments 0.164 0.297∗ 0.361∗ 0.445∗∗ 0.474∗∗ 0.451∗∗ 0.469∗∗ 0.472∗ 0.491∗∗ 0.436∗

(0.096) (0.168) (0.188) (0.196) (0.210) (0.209) (0.222) (0.228) (0.214) (0.209)
Farm-related income 0.048 0.092 0.124 0.151∗ 0.193∗∗ 0.235∗∗ 0.274∗∗∗ 0.314∗∗∗ 0.351∗∗∗ 0.397∗∗∗

(0.061) (0.074) (0.090) (0.087) (0.089) (0.084) (0.076) (0.063) (0.060) (0.064)
Cash expenses 0.121∗∗∗ 0.140∗∗∗ 0.156∗∗∗0.168∗∗∗ 0.183∗∗∗ 0.201∗∗∗ 0.222∗∗∗ 0.246∗∗∗ 0.270∗∗∗ 0.305∗∗∗

(0.011) (0.021) (0.030) (0.035) (0.040) (0.020) (0.034) (0.032) (0.038) (0.042)

Notes: The bias term α̂USDA
h is estimated from the equation (3). ***, **, and * denote statistical significance at 1%, 5%, and 10%, respectively.

Standard errors (in parentheses) are heteroskedasticity and autocorrelation consistent (HAC)(Newey and West, 1987). The sample sizes of regressions
for h=0,1,2,...,9 are T=24, 23,..., 15 respectively. For farm income variables, sample size for h=9 is 14 as the 1997 USDA baseline didn’t publish
projections for the year 2006.
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Table 2: Estimates of bias in FAPRI baseline projections, 1997–2020

Projection horizon

h=0 h=1 h=2 h=3 h=4 h=5 h=6 h=7 h=8 h=9

Corn

Harvested acres −0.005 −0.006 −0.003 0.004 0.007 0.014 0.022 0.031 0.039 0.047
(0.005) (0.010) (0.013) (0.015) (0.020) (0.021) (0.025) (0.028) (0.032) (0.033)

Farm price 0.026 0.047 0.071 0.094 0.124 0.156 0.189 0.223∗ 0.284∗∗ 0.350∗∗

(0.045) (0.076) (0.101) (0.078) (0.087) (0.109) (0.120) (0.105) (0.112) (0.140)
Yield −0.003 −0.001 −0.002 −0.002 −0.002 −0.003 0.001 0.001 −0.004 −0.003

(0.018) (0.020) (0.022) (0.022) (0.023) (0.024) (0.025) (0.026) (0.024) (0.025)
Soybeans

Harvested acres 0.003 0.020 0.034∗∗ 0.042∗∗ 0.054∗∗ 0.062∗∗∗ 0.072∗∗∗ 0.079∗∗∗ 0.084∗∗∗ 0.089∗∗∗

(0.009) (0.013) (0.016) (0.018) (0.019) (0.020) (0.020) (0.023) (0.025) (0.028)
Farm price 0.077∗ 0.091 0.105 0.137 0.168∗∗ 0.211∗∗ 0.249∗ 0.273∗∗ 0.329∗∗∗ 0.391∗∗∗

(0.039) (0.078) (0.097) (0.105) (0.076) (0.094) (0.127) (0.117) (0.109) (0.128)
Yield 0.009 0.009 0.009 0.012 0.013 0.013 0.014 0.024 0.023 0.022

(0.016) (0.019) (0.022) (0.023) (0.023) (0.023) (0.024) (0.022) (0.027) (0.034)
Wheat

Harvested acres −0.026∗∗∗−0.048∗∗−0.067∗∗−0.084∗∗−0.103∗∗−0.111∗∗−0.116∗∗∗−0.130∗∗∗−0.141∗∗∗−0.154∗∗∗

(0.008) (0.017) (0.029) (0.036) (0.036) (0.042) (0.038) (0.032) (0.036) (0.034)
Farm price 0.038 0.064 0.086 0.102 0.128 0.155 0.178 0.205 0.248 0.291∗

(0.059) (0.086) (0.092) (0.083) (0.108) (0.106) (0.110) (0.145) (0.150) (0.143)
Yield 0.026∗ 0.023 0.021 0.019 0.018 0.020 0.031∗∗ 0.030∗∗ 0.031∗∗ 0.035∗∗

(0.013) (0.015) (0.014) (0.013) (0.014) (0.016) (0.014) (0.012) (0.011) (0.014)
Farm income

Net cash income 0.116∗∗∗ 0.147∗∗∗ 0.164∗∗∗ 0.190∗∗∗ 0.228∗∗∗ 0.261∗∗∗ 0.299∗∗∗ 0.326∗∗ 0.354∗∗∗ 0.372∗∗∗

(0.023) (0.032) (0.041) (0.055) (0.068) (0.087) (0.094) (0.122) (0.100) (0.086)
Crop receipts 0.030∗ 0.048 0.062 0.078∗∗ 0.096∗∗∗ 0.121∗∗∗ 0.147∗∗∗ 0.170∗∗ 0.203∗∗∗ 0.239∗∗∗

(0.017) (0.040) (0.053) (0.035) (0.026) (0.036) (0.049) (0.066) (0.061) (0.072)
Livestock receipts 0.030∗∗ 0.044∗∗ 0.059∗ 0.080∗∗ 0.107∗∗ 0.136∗∗ 0.175∗∗ 0.206∗∗ 0.230∗∗∗ 0.252∗∗∗

(0.014) (0.020) (0.028) (0.037) (0.047) (0.058) (0.063) (0.071) (0.072) (0.071)
Govt. payments 0.156 0.226 0.272 0.292 0.303 0.287 0.290 0.287 0.303 0.267

(0.094) (0.157) (0.202) (0.178) (0.239) (0.242) (0.249) (0.246) (0.218) (0.241)
Farm-related income 0.032 0.056 0.087 0.113 0.156∗ 0.201∗∗ 0.240∗∗∗ 0.282∗∗∗ 0.321∗∗∗ 0.357∗∗∗

(0.061) (0.061) (0.085) (0.089) (0.088) (0.082) (0.077) (0.068) (0.062) (0.058)
Cash expenses 0.123∗∗∗ 0.140∗∗∗ 0.156∗∗∗ 0.172∗∗∗ 0.189∗∗∗ 0.212∗∗∗ 0.240∗∗∗ 0.266∗∗∗ 0.296∗∗∗ 0.325∗∗∗

(0.011) (0.018) (0.026) (0.034) (0.038) (0.038) (0.037) (0.042) (0.049) (0.050)

Notes: The bias term α̂FAPRI
h is estimated from the equation (3). ***, **, and * denote statistical significance at 1%, 5%, and 10%, respectively.

Standard errors (in parentheses) are heteroskedasticity and autocorrelation consistent (HAC)(Newey and West, 1987). The sample sizes of regressions
for h=0,1,2,...,9 are T=24, 23,..., 15 respectively.
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Table 3:
Maximum informative projection horizons, h∗

H0:No information H0: Constant mean

FAPRI USDA FAPRI USDA

Corn
Harvested acres 5 5 7 7
Farm price 2 3 5 5
Yield 6 9 9 9

Soybean
Harvested acres 3 1 9 8
Farm price 2 3 5 5
Yield 9 9 9 9

Wheat
Harvested acres 3 3 9 9
Farm price 2 1 4 3
Yield 9 8 8 8

Farm income
Net cash income 2 1 6 6
Crop receipts 3 3 5 5
Livestock receipts 4 3 7 7
Govt. payments 0 0 1 0
Farm-related income 7 8 7 8
Cash expenses 4 4 7 7

37



Table 4: Encompassing Tests

Projection Horizon

item h=0 h=1 h=2 h=3 h=4 h=5 h=6 h=7 h=8 h=9

Corn
Harvested acres 0.599 0++ 0.061+++ 0.319 0.631 -0.013 -0.149 0.271 0.188 -1.091

(0.393) (0.365) (0.280) (0.405) (0.538) (0.840) (0.723) (1.267) (0.750) (1.333)
Farm Price 0.132++ 0.009+ 0.353 0.189 -0.247 -0.985 -1.18 -0.729 -1.043 -0.939+

(0.372) (0.550) (0.838) (1.000) (1.165) (1.600) (1.826) (1.565) (1.194) (1.022)
Yield -0.185 -2.067 1.201 2.058∗ 1.244 -1.546 -1.996 -2.831 -0.53 -1.628++

(1.462) (2.932) (1.839) (1.113) (1.462) (1.978) (1.803) (2.391) (1.565) (0.934)

Soybean
Harvested acres 0.298 1.761∗∗∗ 1.539∗∗∗ 0.369++ -0.597++ 1.018 0.792 1.574∗∗∗ 2.396+++∗∗∗ 2.204+∗∗∗

(0.650) (0.618) (0.496) (0.293) (0.568) (0.715) (0.701) (0.394) (0.371) (0.678)
Farm Price -0.888+++ -0.884++ -0.002 -0.287 -0.479 -1.094+ -1.578+ -1.529+++∗∗ -1.615+++∗∗∗ -2+++∗∗∗

(0.519) (0.717) (0.840) (1.415) (1.150) (1.029) (1.220) (0.681) (0.418) (0.458)
Yield -2.578+++∗∗ -2.215++∗ -0.768++ -0.286 0.417 -0.041 0.026 0.073 -0.323 -1.199++

(1.021) (1.140) (0.714) (1.337) (0.855) (1.387) (0.933) (1.575) (1.356) (0.927)

Wheat
Harvested acres 0.745∗∗∗ -0.081+ 0.489 0.747 0.484 0.071++ -0.326+++ 0.216+ 0.371 0.085+++

(0.222) (0.612) (0.549) (0.744) (0.533) (0.359) (0.435) (0.443) (0.407) (0.231)
Farm Price 0.301 0.896 1.509 1.748∗∗ 1.847∗∗ 1.486∗∗ 1.444 1.006 0.657 0.47

(0.486) (0.798) (0.883) (0.695) (0.787) (0.693) (0.858) (1.038) (1.202) (0.776)
Yield 1.93∗∗ 1.493∗ 2.089∗ 0.733 -0.124+ 0.48 1.463∗ 2.012∗∗∗ 1.207∗∗ 0.907

(0.725) (0.780) (1.086) (0.691) (0.562) (0.681) (0.805) (0.623) (0.409) (0.618)

Farm Income
Expenses 0.374 0.691 1.252 1.261 1.141 0.733 0.482 -0.139++ -0.41+++∗∗ -0.956+++∗

(0.597) (0.629) (0.881) (0.791) (0.777) (0.698) (0.690) (0.400) (0.160) (0.526)
Crop Receipts 1.134 1.421 0.88 0.56 0.186 -0.296 -0.631 -0.761 -0.87 -1.491+++∗∗

(0.700) (1.099) (1.233) (1.250) (1.140) (1.076) (1.151) (1.176) (1.132) (0.673)
Farm-related Income 1.511 1.813 0.781 0.486 1.125 0.619 0.392 0.944 0.678 1.673∗∗∗

(0.967) (1.301) (1.218) (0.914) (1.057) (0.917) (0.884) (0.639) (0.737) (0.449)
Government Payments 0.156+++ 0.697∗∗ 0.153++ 0.363 -0.283++ -0.739++ -0.626++ -0.392++ -0.445++ -0.238+++

(0.198) (0.309) (0.397) (0.487) (0.603) (0.610) (0.633) (0.590) (0.553) (0.380)
Livestock Receipts 1.469∗∗∗ 1.34∗∗ 0.671 0.672 0.942 0.197 -0.152++ -0.531+++ -0.571+++ -0.958+++∗∗∗

(0.437) (0.595) (0.657) (0.667) (0.674) (0.636) (0.487) (0.431) (0.391) (0.284)
Net Cash Income 0.858∗∗∗ 1.196∗∗∗ 1.061∗∗∗ 0.484++∗∗ -0.026 -0.747+++∗ -0.67+++∗ -0.503+++ -0.161++ -0.351++

(0.286) (0.275) (0.268) (0.202) (0.595) (0.406) (0.382) (0.370) (0.485) (0.475)

Notes: *, **, and *** denote statistical significance at 10%, 5%, and 1% respectively for testing the null hypothesis H0 : λ = 0. Likewise, +, ++, and +++ denote statistical significance at

10%, 5%, and 1% respectively for testing the null hypothesis H0 : λ = 1.
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