AE 503

PRICES AND EQUILIBRIUM

Professor Ian Sheldon

Suppose consumer A has endowments of fruit and fish:

fruit =
$$\omega^1_A$$
, fish = ω^2_A

Their prices are:

fruit =
$$p^1$$
, fish = p^2

Consumer A's *wealth* I_A, given endowment and prices is:

$$I_{A} = p^{1} \ \omega^{1}_{A} + p^{2} \ \omega^{2}_{A}$$

$$\uparrow$$
Wealth
$$Value \ of \ good \ 2 \ endowment$$

Consumer A can now buy and sell goods 1 and 2 at prices p^1 and p^2 , so the expression for wealth I_A can be thought of as a *budget line*.

Think of *consumption* of goods 1 and 2 as opposed to endowments:

$$\mathbf{I}_{\mathbf{A}} = \mathbf{p}^1 \mathbf{x}^1_{\mathbf{A}} + \mathbf{p}^2 \mathbf{x}^2_{\mathbf{A}}$$

where x_A^1 and x_A^2 are consumption of goods 1 and 2 respectively

Re-arranging I_A:

$$\mathbf{p}^2 \mathbf{x}^2_{\mathbf{A}} = \mathbf{I}_{\mathbf{A}} - \mathbf{p}^1 \mathbf{x}^1_{\mathbf{A}}$$

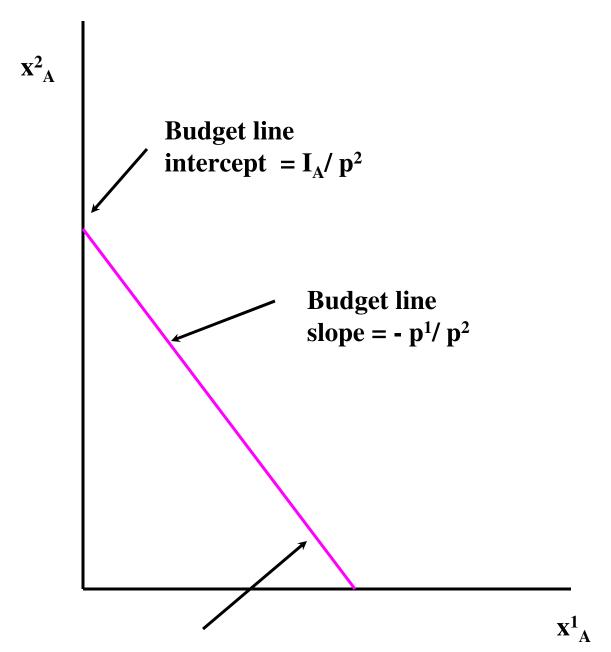
$$x_A^2 = \frac{I_A}{p^2} - \frac{p^1}{p^2}x_A^1$$

where I_A/p^2 = the *intercept* of the budget line

and p^1/p^2 = the *slope* of the budget line

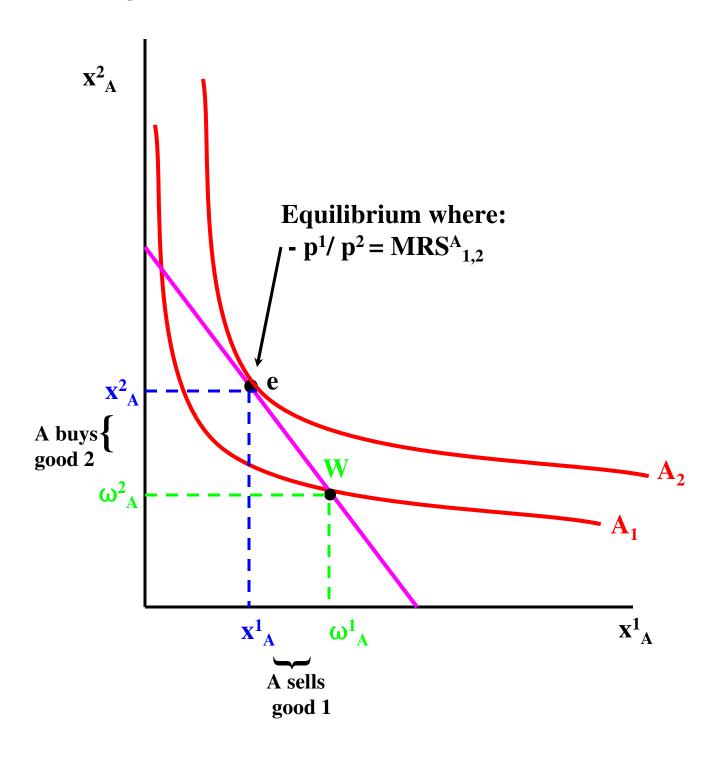
(See next figure)

BUDGET LINE



Budget line: $x_A^2 = I_A / p^2 - p^1 / p^2 x_A^1$

EQUILIBRIUM AND BUDGET LINE



CHANGE IN PRICES AND EQUILIBRIUM

