

EFFICIENCY IN EXCHANGE

Professor Ian Sheldon

EFFICIENCY IN EXCHANGE

To gain an initial understanding of efficiency, focus on an economy of pure exchange. Think of this economy as a desert island with the following characteristics:
>2 consumers, A and B
>2 goods, 1 (fruit) and 2 (fish)
$>$ A's consumption bundle is:

$$
\mathbf{X}_{\mathrm{A}}=\left(\mathbf{x}_{\mathrm{A}}^{1}, \mathbf{x}_{\mathrm{A}}^{2}\right)
$$

B's consumption bundle is:

$$
\mathbf{X}_{\mathrm{B}}=\left(\mathbf{x}_{\mathrm{B}}^{1}, \mathbf{x}_{\mathrm{B}}^{2}\right)
$$

$>$ There are fixed amounts of fish and fruit available, each consumer starting off with an initial endowment, ω, of each good:
($\omega_{\mathrm{A}}^{1}+\omega^{1}{ }_{\mathrm{B}}=\mathbf{W}^{1}$
$\omega^{2}{ }_{\mathrm{A}}+\omega^{2}{ }_{\mathrm{B}}=\mathbf{W}^{2}$
where W^{1} and W^{2} are total amounts of the two goods available
$>$ The exchange economy is assumed competitive, each consumer taking prices as given
$>$ Consumers A and B have well-behaved preferences

REVIEW

$>$ What are well-behaved preferences?
$>$ Consumer A's utility function can be written as:

$$
\mathbf{U}_{\mathrm{A}}=\mathbf{f}\left(\mathbf{x}_{\mathrm{A}}^{1}, \mathbf{x}_{\mathrm{A}}^{2}\right)
$$

$>$ Essentially, the utility function of consumer A, can be represented by the standard indifference map
$>$ Efficiency in exchange depends critically on this

CONSUMPTION BUNDLES

Consumer A has to rank consumption bundle 1 $\left(\mathbf{X}_{\mathrm{A}}^{\prime}\right)$ with consumption bundle $2\left(\mathbf{X}^{\prime \prime}{ }_{\mathrm{A}}\right)$
$>\mathbf{X}_{\mathrm{A}}^{\prime}>\mathrm{X}^{\prime \prime}{ }_{\mathrm{A}}$ consumer A strictly prefers bundle 1 to bundle 2
$>\mathbf{X}_{\mathrm{A}}^{\prime} \sim \mathbf{X}^{\prime \prime}{ }_{\mathrm{A}}$ consumer A is indifferent between bundles 1 and 2
> $>\mathbf{X}_{\mathrm{A}}^{\prime} \geq \mathbf{X}^{\prime \prime}{ }_{\mathrm{A}}$ consumer A weakly prefers bundle 1 to bundle 2

Weak preference means consumer A either prefers bundle 1 over bundle 2 or is indifferent between them

Preferences are assumed to conform to the following axioms:
$>$ Completeness given two bundles, consumers can make a choice, i.e. $X^{\prime}{ }_{A}>X^{\prime \prime}{ }_{A}$, or $X^{\prime}{ }_{A} \geq X^{\prime \prime}{ }_{A}$, or $X_{A}^{\prime} \sim X^{\prime \prime}{ }_{A}$
$>$ Reflexivity any bundle is at least as good as itself, i.e. $\mathbf{X}_{\mathrm{A}}^{\prime} \geq \mathbf{X}_{\mathbf{A}}^{\prime}$
$>$ Transitivity if $\mathbf{X}_{\mathrm{A}}{ }^{>}>\mathrm{X}^{\prime \prime}{ }_{\mathrm{A}}$,

$$
\text { and if } \mathrm{X}^{\prime \prime}{ }_{A}>\mathrm{X}^{\prime \prime \prime}{ }_{A},
$$

then $X_{A}^{\prime}>X^{\prime \prime \prime}{ }_{A}$
i.e. if consumer A prefers bundle 1 to bundle 2 , and prefers bundle 2 to another bundle 3 , then consumer A prefers bundle 1 to bundle 3

INDIFFERENCE CURVE

Well-behaved preferences have two features:
more is better, less is worse, i.e. fruit and fish are "goods" not "bads"
ind indiference curves are convex to the origin

Convexity relates to the slope of the indifference curve
slope of an indifference curve at any one point is the marginal rate of substitution of the two goods 1 and 2 - $\mathbf{M R S}^{\mathbf{A}}{ }_{\mathbf{1 , 2}}$
the marginal rate of substitution is given by the slope of a tangent at a specific point
slope of curve $=-\frac{\Delta \mathbf{x}_{\mathrm{A}}^{2}}{\Delta \mathrm{x}_{\mathrm{A}}{ }^{1}}=\mathbf{M R S}_{1,2}^{\mathrm{A}}$

MARGINAL RATE OF SUBSTITUTION

Fruit

淂 the marginal rate of substitution of good 1 for good 2 is defined as the number of units of good 2 that must be given up in exchange for an extra unit of good 1 , and keep the consumer on the same indifference curve

显 convexity of the indifference curve means that as one moves down a curve from left to right, its slope decreases (in absolute terms), i.e. the marginal rate of substitution is diminishing (see next figure)
the concept of a diminishing marginal rate of substitution is closely related to the concept of diminishing marginal utility

$$
\mathbf{M R S}_{1,2}^{\mathrm{A}}=-\frac{\Delta \mathbf{x}_{\mathrm{A}}^{2}}{\Delta \mathbf{x}_{\mathrm{A}}^{1}}=\frac{\mathbf{M U}_{\mathrm{A}}^{1}}{\mathbf{M U}_{\mathrm{A}}^{2}}
$$

where MU is marginal utility; as more of $\operatorname{good} 1$ is substituted for good 2 , the marginal utility of good 1 declines, while that for good 2 increases

DIMINISHING MARGINAL RATE OF SUBSTITUTION

Fruit

