

"Agricultural productivity and the impact of GM crops: What do we know?"

Ian Sheldon
Andersons Professor of International Trade

- Growth in agricultural productivity has important implications for food security and food prices
- Net food importing countries have rapidly growing populations and growing food demand per capita, plus poorer land and water availability
- There are significant yield gaps in many African importing countries (Matthews, 2014)
- Investment in R&D could significantly increase production and productivity growth – Brazil, India and China now account for 31% of public research

- 20th Century growth in food supply outweighed growth in demand, driving down real food prices
- Recent price spikes are last step in slowing down in rate of decline in real food prices since 1970s
- Consistent with productivity slowdown global average yields for key crops have fallen:

Average annual yield growth rates (%)

Crop	1961-1990	1990-2011		
Corn	2.33	1.77		
Wheat	2.72	1.09		
Rice	2.14	1.06		
Soybeans	1.72	1.21		

Real US Prices of Corn, Soybeans and Wheat, 1924-2012

- Public expenditure on agricultural R&D has been declining in developed countries - share in total dropped from 56% to 48% between 1960 and 2009
- Increasing share of their spending going to offfarm issues, e.g., health and nutrition
- Changes in patent law have provided incentives to private firms to invest in development of GM crops – corn, soybeans, cotton and rapeseed
- 1.25 billion acres planted to GM crops since 1996
- What do we know about impact of first-generation GM crops on agricultural productivity?

GM Area Harvested in 2010 (millions of acres)

	Cotton		Soybeans				
90% of area	India	23.2	US	72.6	1		
	US	10.1	Brazil	45.5	}	92% of area	
	China	8.6	Argentina	44.5			
	Argentina	1.5	Paraguay	6.7			
	ROW	3.2	ROW	7.7		_	
85% of area -	Corn		Rapeseed				
	US	69.7	Canada	15.0	}	85% of area	
	Brazil	18.5	US	1.2	,		
	Argentina	6.9	Australia	0.2			
	South Africa	4.7	ROW	0.0			
	ROW	4.7					

- Adoption of GM crops occurs along two margins:
 - intensive margin conventional seed is replaced with GM variety
 - extensive margin previously unused land recruited into production, switch from other crops, and double-cropping
- GM cotton, corn and rapeseed mostly adopted along intensive margin
- In contrast, adoption of GM soybeans adopted evenly along both margins – 50% increase in acreage mostly in Brazil and Argentina

Adoption of GM Technology

World Area of Four Crops with GM Varieties (1 hectare = 2.47 acres)

- Potential for yield gains from GM technology likely greatest where pest pressure is high, i.e., in low income developing countries
- Most GM yield estimates based on randomized control tests – farmer behavior held constant, i.e., a pure "gene effect"
- Diminished crop damage increases marginal value of other inputs generates extra yield gains
- Impact on extensive margin depends on whether additional production would have occurred in absence of GM crops

- Yield effects at intensive and extensive margins:
 - 2-14% to 9-19% increase in corn yields
 - 0-25% to 5-29% increase in cotton yields
 - 2-39% increase in soybean yields
- Adoption of GM corn, cotton and soybeans has lowered prices by 13%, 18% and 2-65% respectively (Barrows et al., 2013)
- Global net benefit to producers estimated at \$65 billion over period 1996-2009, \$30 billion accruing to US producers (Brookes and Barfoot, 2012)

- Adoption of first-generation GM crops has had positive impact on productivity, with associated impact on prices and land-use
- GM corn adoption limited to 30% of global acreage – affected by bans/regulatory restrictions in China, EU and Africa
- Currently no commercial use of GM technology in key food grains rice and wheat
- Important to recognize calorie substitution between wheat, rice and corn (Wright, 2014)

- Public concern about safety of GM crops has slowed approval and release of GM rice and wheat
 - GM rice approved by China in 2009, but not fully commercialized
 - Monsanto dropped development of GM wheat in 2004
- China an interesting case: significant public funding of biotechnology R&D, and has approved feed-grains for import – but public skepticism about growing GM crops for human consumption