PARTIAL EQUILIBRIUM EFFECTS

FIGURE 1: EFFECTS IN A SMALL ECONOMY

Diagram showing supply (S) and demand (D) curves with various price levels and quantities.
Distorting a Commodity Market in a Small Country

In Figure 1, small economy faces world price p_w, $0Q_w$ is supplied by domestic farmers, OC_w is consumed, Q_wC_w is imported.

$0ajQ_w$ is gross farm income, $0zjQ_w$ is variable cost (i.e. area under the supply curve), and ajz is producer surplus, i.e return to farmers’ labor and capital assets.

Suppose government provides a direct price subsidy to farmers, raising the price farmers get to p_1, the consumer price remaining at p_w.

- extra output of Q_wQ_1, imports reduced to Q_1C_w

- gross farm income rises to $0bcQ_1$, the variable costs of producing Q_wQ_1 at home are Q_wjcQ_1, and increase in producer surplus is $abcj$

- treasury outlay for the subsidy is $abci$, so the net cost of the policy is cij, i.e. the extra variable cost of home production vs. imports
Suppose government imposes an import tariff, which raise the domestic price to p_1

- as well as production effects, total consumption falls to $0C_1$, imports falling to Q_1C_1

- consumer surplus falls by abef, but part of this is a transfer to the treasury of tariff revenue of cegi, and part is a transfer to producers of abcj

- the net loss from the policy after accounting for the transfers is the extra production cost cij, and the deadweight loss efg

- a tariff causes a larger net loss than a direct subsidy to farmers

Suppose a tariff is prohibitive, raising price to p_2, production being equal to consumption at $0Q_2 = 0C_2$

- producer surplus increases by autj, while consumer surplus falls by autf

- as there is no tariff revenue, the net loss to the economy is made up of jtv, the extra cost of production, and tvf, the deadweight loss
If government wants farmers to get a price higher than \(p_2 \), it will be necessary to subsidize exports

- a per unit export subsidy of \(p_3 - p_w \) will raise domestic prices to \(p_3 \), production expanding to \(0Q_3 \), consumption falling to \(0C_3 \), \(C_3Q_3 \) being exported

- the treasury cost of the subsidy is \(npqr \), the consumer surplus loss is \(asnf \), and the producer surplus gain is \(aspj \)

- the export subsidy, which would require a border tariff to prevent arbitrage, would add further to the redistribution from consumers to producers, and from taxpayers to producers, the net loss being \(jpq \) plus \(nfr \)

Distorting a Commodity Market in a Large Country

Consider in Figure 2 a large exporting country that faces a downward-sloping excess demand curve

- if country uses an export subsidy to raise its domestic price from \(p_w \) to \(p_1 \)
- exports expand from $C_wQ_w (0X_w)$ to $C_1Q_1 (0X_1)$, which drives down the world price to p_w', which requires a larger per unit export subsidy in equilibrium of p_1 to p_w'

- Gain to producers is $cijd$, loss to consumers is $cghd$, the gain being $gijh$, which is equivalent to $acdb$

- taxpayers have to pay $acef$, resulting in a net loss of $abdef$

- some of the loss $bdef$ is transferred to foreign consumers because of the lower world price, the rest is a pure loss abf, where $abn = (ghm+ijk)$, and bfn is the corresponding sum of triangles for the rest of the world

- large exporting country has more to lose than a small country by raising its domestic price above the world price as it depresses the world price
Consider in Figure 3 a large importing country that has a downward-sloping excess demand curve

- if country uses an import tariff to raise its domestic price from p_w to p_1

- production increases from $0Q_w$ to $0Q_1$, consumption falls from $0C_w$ to $0C_1$, imports falling from $Q_wC_w (0M)$ to $Q_1C_1 (0M_1)$

- the decline in excess demand to ED' causes world price to fall to p'_w, so a tariff of p_1 to p'_w is needed, raising revenue of $ebcf$ or $mnrk$

- producer surplus increases by $jkba$, while consumer surplus falls by $jkcd$

- the net effect depends on whether $abcd$ ($krsj$) is greater (less) than area $ebcf$ ($mnrk$), which will depend on the elasticity of the excess demand curve

- the rest of the world is worse off by the area $mnsj$