AE 503

EXTERNALITIES AND PUBLIC POLICY

Professor Ian Sheldon

- If there is market failure, government will have to intervene in order to correct the negative pollution externality
- There are several possible *policy* instruments that can be used:
 - > Taxes on output (pollution)
 - **Caps on output (pollution)**
 - > Cap and trade in pollution permits
- These policies can be compared in terms of their effects on pollution and social welfare

Taxes

- Suppose government decides to utilize tax to deal with steel firm's pollution, what rate of tax will result in socially optimal level of pollution x*?
- Optimal rate of tax will be one that is equal to fishery's marginal pollution cost MPC_f at socially efficient level of pollution, assuming fixed relationship between output and pollution
- Per unit output (pollution) tax, which is often called a *Pigouvian tax*, has two effects:
 - ➤ Shifts up steel firm's marginal production cost curve MC_S by amount of tax to where marginal social costs MSC_S just cut marginal revenue MRS (see panel (a) of Figure 1)
 - Marginal abatement cost curve MAC_S shifts inwards to cut axis at x* (see panel (b) of Figure 1)

Figure 1: Taxes

Pollution Taxes vs. Pollution Caps

- Left unregulated, steel mill will abate zero units of pollution, avoiding abatement costs of (B+C+D) under MAC_S (see Figure 2)
- If tax set where marginal benefit of abating pollution is equal to marginal abatement cost:
 - ▶ Left of x*, abatement costs (C+D) > tax bill (D) – firm pays tax and pollutes
 - Right of x^* , tax bill (A+B) > abatement costs (B) firm abates pollution
- Efficient level of pollution = x^* , abatement cost = (B+D), and government revenue = (D)
- Under pollution cap, firm not allowed to pollute beyond x^* , efficient level of pollution = x^* , and abatement cost = (B)
- What if firms have different marginal abatement costs?

Figure 2: Pollution Tax vs. Pollution Cap

Pollution Taxes vs. Cap and Trade

- Suppose there is old dirty steel mill with MAC_h, and newer cleaner one with MAC_l (see Figure 3)
- Width of horizontal axis is abatement needed efficiency where $MAC_h=MAC_l$, i.e., the equimarginal principle total costs of abatement are (C+G+K), and low abatement cost firm reduces pollution more at x^*
- Tax could be set where MAC_h=MAC_l
 - high cost firm abates to x^* , incurring abatement cost (K), paying tax (B+C+F+G)
 - \triangleright low cost firm abates to x^* , incurring abatement cost (C+G), paying tax (J+K)
- Efficient abatement level = x^* , abatement costs minimized at (C+G+K), and tax revenue = (B+C+F+G+J+K)

- Pollution cap could be set, pollution permits being issued to firms each permit gives firm right to pollute one unit
- Suppose firms are given same number of permits given by "cap" line, abatement costs being (C) for low cost firm, and (D+F+G+K) for high cost firm
- High cost firm may prefer to purchase additional permits rather than paying high abatement costs
- d to e above areas D, F and G is *demand* for permits, and g to e is *supply* of permits
- Competitive permit market results in permit price equivalent to tax permit trading reducing overall abatement costs by (D+F)
- x* achieved and abatement costs minimized at (C+G+K) cost lower to firms than tax

Figure 3: Pollution Tax vs. Cap and Trade

