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Increased economic integration in the Asia-Pacific region: What might be the potential 
impact on agricultural trade? 

 
Abstract 

In this paper, a structural gravity model is presented which features intra-sector 
heterogeneity in agricultural productivity systematically linked to land and climate 
characteristics.  The “systematic heterogeneity” (SH) gravity model predicts that countries 
with similar land and climate characteristics will tend to specialize in the same agricultural 
products.  Agricultural trade flow elasticities then depend on comparative advantage, with 
larger-magnitude trade flow responses predicted among countries more likely to specialize 
in similar agricultural products and thus compete head-to-head in foreign markets.   Based 
on estimating a random-coefficients logit model for a sample of 63 countries and 123 
agricultural items, countries trading in the Asia-Pacific region with comparative advantage 
in similar products are identified.  Drawing on this, two scenarios are evaluated using the 
model:  tariff cuts agreed under the CPTPP on products in the data set among CPTPP member 
countries; the US obtaining equivalent access to CPTPP markets and following Australia by 
offering zero tariffs on all agricultural products in the model.      

Keywords: Agricultural trade, gravity, trade costs 
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1. Introduction 

The Trans-Pacific Partnership (TPP) signed in 2015 was expected to have a significant effect 

on agricultural trade in the Asia-Pacific region. By 2025, TPP agricultural trade was forecast 

to increase by $8.5 billion, the US increasing its agricultural exports to other countries in the 

agreement by $2.8 billion, a 33 percent increase in its market share (Burfisher et al., 2014).  

This increase in US agricultural trade would have been driven largely by the fact that the 

agricultural sector would have gained preferential market access to several countries with 

whom the US currently has no regional trade agreement (RTA), most notably Japan. 

Although the United States has withdrawn from the TPP, the remaining 11 member 

countries agreed on a new treaty in November 2017 at the Asia Pacific Economic 

Cooperation (APEC) summit in Vietnam, the Comprehensive and Progressive Agreement for 

Trans-Pacific Partnership (CPTPP).  Substantively, CPTPP retains most of the provisions of 

TPP, including significant reductions in agricultural tariffs between the member countries.  

In addition to establishment of CPTPP, several of its members are also participating in 

negotiations to form the Regional Comprehensive Partnership (RCEP).  RCEP is a proposed 

RTA between the 10 member countries of the Association of Southeast Asian Nations 

(ASEAN), and the 6 countries with whom ASEAN has existing RTAs, which include China and 

India.  RCEP, which would be the world’s largest trading bloc, accounting for 39 percent of 

global GDP, is scheduled to be completed in November 2018. 

It is clear that increased economic integration within each, as well as the crossover 

between the RTAs, has the potential to significantly affect agricultural trade flows in the 

region, as well has have an impact on the extent of preferential access for US agricultural 

exports.  For example, Heerman, Arita, and Gopinath (2015) find that if the US is excluded 
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from trade liberalization in the Asia-Pacific, the expected loss in the US share of agricultural 

exports in the region is increasing in the extent to which close competitors such as Canada 

and Australia gain new market access. 

In this paper, the potential economic impact on agricultural trade of increased economic 

integration in the Asia-Pacific region is evaluated using a systematic heterogeneity (SH) 

general equilibrium (GE) gravity model developed by Heerman (2016), and previously 

applied by Heerman and Zahniser (2018) to potential rollback of the North American Free 

Trade Agreement (NAFTA).  Specifically, the model features intra-sector heterogeneity in 

agricultural productivity linked to land and climate characteristics.  The model predicts that 

countries with similar land and climate characteristics will systematically tend to specialize 

in the same agricultural products.  Agricultural trade flow elasticities then depend on 

comparative advantage, with larger-magnitude trade flow responses predicted among 

countries more likely to specialize in similar agricultural products and thus compete head-

to-head in foreign markets. 

The disadvantage of introducing non-random sources of comparative advantage and 

trade costs is that the gravity-like structural relationship used to parameterize the model 

cannot be specified in the log-linear form commonly used in gravity modeling (Head and 

Mayer, 2014).  Instead, we specify the equation relating bilateral trade flows to trade costs 

and country characteristics as a random coefficients logit model (Berry, Levinsohn and 

Pakes, 1995).  This allows a country’s sensitivity to changes in a competitor’s trade cost to 

vary across competitors without breaking the agricultural sector into several sub-sectors 

(Heerman 2016; Heerman, et al., 2015; Heerman and Sheldon, 2017). 
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Based on estimating a random-coefficients logit model for a sample of 63 countries and 

134 agricultural items, and using interactions between exporter land and climate 

characteristics and product land and climate production requirements, we identify countries 

trading in the Asia-Pacific region likely to have comparative advantage in similar products.  

These countries’ trade flows are then more elastic to changes in each other’s trade costs.  

From this, it is possible to evaluate the extent to which the US is likely to be denied 

preferential market access to countries that are members of CPTPP and/or RCEP.  For 

example, we are able to evaluate the extent to which the United States’ close competitors 

gain a larger market share under the CPTPP relative to the TPP than do countries like 

Malaysia.   

The remainder of this paper is structured as follows:  in sections 2 and 3 respectively, 

the background to the Trans-Pacific integration under the CPTPP and its relationship to 

agricultural trade is described, and the underpinnings to the SH model are outlined; this is 

followed by a description, specification and solution of the SH model in sections 4, 5 and 6, 

and then a discussion of an evaluation of TPP in section 7; finally, the paper is summarized 

and some conclusions are drawn in section 8. 

 2. Background on Trans-Pacific integration and agriculture 

 

CPTPP and agricultural trade 

Over the period 2010-12, agricultural imports by CPTPP members and the United States 

totaled $279 billion, of which 51 percent were sourced from other CPTPP partners and the 

United States, while 43 percent of their agricultural exports went to these countries. Canada 

and Mexico are both highly dependent on other countries in this group for both agricultural 

exports and imports, mostly due to their trade with the US.  In the case of the US over the 
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same period, 42 and 47 percent of its agricultural exports and imports respectively went 

to/were sourced from CPTPP members (Burfisher et al., 2014). 

Agricultural products traded between these Trans-Pacific trading partners are currently 

subject to higher applied tariffs on average, than manufactured products – 5.2 vs. 1.8 percent 

- although bilateral protection varies considerably by country (Disdier, Emlinger and Fouré, 

2015). For example, average applied agricultural tariffs are 3.6 percent at the US border 

compared to 23 percent at the Japanese border.  Agricultural tariffs also vary based on 

whether trading partners are members of an existing RTA, and also by product.  For example, 

Mexico’s average applied agricultural tariff against CPTPP members and the United States is 

15.6 percent, ranging from 30.7 percent against Australia to 3.2 and 1 percent on agricultural 

imports from Canada and the US, its NAFTA partners.  In the case of specific agricultural 

products, different countries currently have high levels of protection for different products.  

For example, Canada protects its markets for dairy products, poultry and eggs, its average 

applied tariff on US dairy products being 110 percent, even though Canada and the US are 

both members of NAFTA. Japan protects its markets for beef rice, wheat, barley, sugar, dairy 

products, and selected fruit and vegetables, Japanese applied import duties on cereals 

exceeding 200 percent, largely due to the level of protection afforded to its rice sector.  In the 

case of the US, sugar, selected dairy products and tobacco are protected with the applied 

tariff on tobacco products currently applied at 350 percent (Freund, Moran and Oliver, 

2016). 
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Burfisher et al. (2014) estimate the impact of removing all agricultural tariffs and tariff-

rate quotas (TRQs) by 2025 using a computable general equilibrium (CGE) model.1  The 

estimates indicate that TPP would have resulted in a 6.6 percent increase in agricultural 

trade by 2025. This increase would account for an additional $8.5 billion in the agricultural 

marketplace. TPP was also expected to increase US market access to several countries where 

it currently has no RTA, notably Japan, where 50 percent of US agricultural exports would 

have faced zero tariffs once TPP was implemented.  In the case of other agricultural products, 

preferential access would have been given under new tariff-rate quotas, where specified 

levels of imports would be subject to low tariffs, including dairy products imported by 

Canada, and rice, wheat and barley imported by Japan.  With Japan being its fifth largest 

agricultural export market, reduction in their agricultural tariffs has been a long-held 

objective of US trade policy, and one not addressed as yet in the WTO.  With increased market 

access, the study anticipated that TPP would result in a 33 percent overall increase in US 

agricultural exports and a 10 percent increase in imports by 2025.   

Of course, while TPP was expected to result in considerable liberalization of agricultural 

trade, the nature of the agreement was such that there would have been a phase-in period 

across countries and products.  Once the agreement took effect, almost 32 percent of tariff 

lines in Japan, 31 percent in Vietnam, 92 percent in Malaysia, all but one tariff line in 

Australia, and 99 percent in New Zealand were to be eliminated, with additional 

liberalization being phased in over 15 to 20 years (Hendrix and Kotschwar, 2016).  However, 

significant barriers to market access would have remained in some areas, notably the dairy 

                                                           
1 Both the modeling approach and scenario analysis carried out in Burfisher et al. (2014) are substantially 
different from the model and scenarios considered in this paper.  The results are not intended to be directly 
compared. 
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sector, where the Canada, Japan and the US backed off dairy sector reform in order to 

maintain domestic support programs. 

 

3. Model background 

Until recently, the conventional view in international economics was that the gravity 

equation lacked microeconomic foundations (Head and Mayer, 2014).   However, it is now 

considered general enough to be applied beyond a sub-set of countries or sectors (Eaton and 

Kortum, 2002; Anderson and Wincoop, 2003; Arkolakis, Costinot, and Rodríguez-Clare, 

2012), and that importer and exporter fixed effects can be used to account for the 

multilateral trade resistance terms derived from different theoretical models (Feenstra, 

2004).  In addition, evaluating a standard gravity equation on the basis of exports (imports) 

to (by) country n, at the firm/industry/sector-level as opposed to the economy-wide level 

using bilateral trade, has a clear analytical justification, drawing on a range of trade theories, 

e.g., Melitz (2003); Anderson and Wincoop (2004); Chaney (2008); Anderson and Yotov 

(2010a; 2010b; 2012); Costinot, Donaldson, and Komunjer (2012); and Costinot and 

Rodríguez-Clare (2014).  As a result, robust estimation of firm/industry/sector-level gravity 

equations using export (import) data is now common in the agricultural economics 

literature, some recent applications including: Reimer and Li (2010) (crop trade); 

Jayasinghe, Beghin, and Moschini (2010) (US corn seed exports); Cardamone (2011) (fruit 

exports); Chevassus-Lozza and Latouche (2012) (French firms’ agri-food exports); Xu 

(2015) (agricultural trade); and Dal Bianco et al. (2016) (wine exports). 

An important characteristic of the range of structural gravity models is that the 

quantitative implications that can be drawn from them are very dependent upon a key 
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parameter: the elasticity of trade with respect to trade frictions such as tariffs (Simonovska 

and Waugh, 2014).   Arkolakis et al. (2012) argue that the elasticity of trade, denoted as , is 

one of two sufficient statistics necessary for calculating the welfare effects of trade, the other 

being the share of expenditure within a specific country on domestically produced goods 

denoted as . They show that the change in a country’s real income, ˆ W W W= / , resulting 

from say a reduction in trade costs can be calculated as ˆˆ εW λ1/= , where ˆ /   is the 

change in the share of domestic expenditure on imports.  Importantly, changes in welfare are 

independent of the class of trade model, i.e., the source of the gains from trade depends on 

the type of trade model being estimated, but the aggregate gains from trade do not.  Arkolakis 

et al. (2012) show that the welfare formula can be derived from three different structures:  

an Armington model (see Anderson and Wincoop, 2003), a Ricardian model (see Eaton and 

Kortum, 2002), and a heterogeneous firms model (see Melitz, 2003), where the margin of 

adjustment occurs respectively through consumption, reallocation of labor across sectors, 

and reallocation across firms within sectors. 

For this equivalence result to hold, Arkolakis et al. (2012) impose a key restriction on 

the partial elasticities: the import demand system is CES.  Given the elasticities capture the 

percentage change in relative imports by country n from country i given a change in trade 

costs niτ , the CES assumption implies that: there is a symmetric impact on relative demand 

𝑋𝑛𝑖/𝑋𝑛𝑛 for imports by n for all exporters i n ; and, any change in a third country’s trade 

costs 
niτ  has the same proportional impact on niX and nnX .  In other words, changes in 

relative demand depend only on changes in trade costs niτ .  Given this result, Arkolakis et al. 

(2012) show that these effects can be recovered from a simple logarithmic gravity equation, 
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the estimated parameter for changes in trade costs being treated as an estimate of the trade 

elasticity , and the change in real income of country n due to the trade shock being 

estimated as, ˆˆ ε
n nW = λ1/ , irrespective of the margin of adjustment.2 

Turning to trade in agricultural products, we argue that the CES assumption is overly 

restrictive, i.e., the elasticity of each exporter i’s trade flows with respect to a given 

competitor’s, i , trade flows is constant and directly proportional to the exporter’s market 

share in n, irrespective of whether or not i competes with i .  As noted earlier, Heerman et 

al. (2015), refer to this restriction as the IIE property, i.e., changes in a third country’s trade 

costs 
niτ are “irrelevant” to the ratio of any two competitors’ market share in a given import 

market n.  The results of Arkolakis et al. (2012) indicate that IIE is implicitly imposed in trade 

models such as Eaton and Kortum (2002), Melitz (2003) and Anderson and Wincoop (2003).   

Heerman et al. (2015) argue that the IIE property is very unlikely to hold in the case of 

agricultural trade due to characteristics of natural endowments (land, soil, and climate) and 

production requirements being non-random drivers of comparative advantage within the 

agricultural sector. Consequently, econometric results assuming IIE will likely be imprecise, 

and any predictions about the effect of changes in trade costs on bilateral agricultural trade 

and production patterns, along with any estimated welfare effects, may be quite misleading. 

Consider the Japanese tariff reductions offered to CPTPP member countries such as 

Australia, Canada and Malaysia.  If the IIE property holds, the reduction in agricultural tariffs 

would imply that Japanese buyers substitute to Australian, Canadian and Malaysian products 

                                                           
2 Adao, Costinot, and Donaldson (2017) also note that general equilibrium trade modelling based on the gravity 
equation is considerably more parsimonious than using CGE models as developed by the Global Trade Analysis 
Project (GTAP) which has 13,000 structural parameters (Hertel, 2013).   
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and away from its all other trading partners, including the United States, in a constant and 

direct proportion to their initial market shares.  However, this makes little sense if we 

consider that Australia, Canada and the United States have similar land endowments and 

climate characteristics, and therefore systematically specialize in a similar set of agricultural 

products, which contrasts with Malaysia which has little available land and has a tropical 

climate.  Consequently, one would expect that exclusion from TPP will result in the United 

States losing a proportionately larger market share in Japan relative to Australia and Canada 

than it will lose relative to Malaysia. 

In the context of this paper, the focus is on an extension of Eaton and Kortum (2002).  

The latter assumes that comparative advantage within manufacturing is a function of a 

random productivity variable that is independently distributed across products in the sector. 

Specifically, no two countries are more likely to compete against each other exporting the 

same products than any other country, i.e., the IIE property is assumed to hold.  Extensions 

of Eaton and Kortum (2002) to multisector analysis by, inter alia, Burstein and Vogel (2010), 

Chor (2010), Costinot et al. (2012), Shikher (2011, 2012), Caliendo and Parro (2015), Tombe 

(2015), and Kerr (2017) implicitly recognize the limitation of this assumption, allowing 

average productivity, and in some cases the dispersion of productivity to vary across sectors, 

generating non-random patterns of trade specialization across sectors and sub-sectors.   

However, these models still maintain the assumption of random heterogeneity within 

each sector or sub-sector, the IIE property holding at that level.  In addition, there are 

practical limitations to a multi sub-sector approach within agriculture (Heerman, 2016; 

Heerman and Sheldon, 2017).  First, the researcher has to be able to define sub-sectors of 

like products such that specialization of a country within that sub-sector can be assumed to 
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be randomly determined ex ante.  For example, Reimer and Li (2010) focused on trade in 

crop agriculture, a well-defined sub-sector, but this still ignores the fact that agricultural 

product-specific farm and trade policies may be enough to distort any underlying forces of 

comparative advantage for crops that are substitutes in production.  Second, disaggregation 

to sub-sectors requires considerably more bilateral trade and production data, and in the 

case of agriculture, where many products are thinly traded, there is the critical empirical 

issue of dealing with zero trade flows.             

The key departure in this paper is the introduction of systematic heterogeneity into the 

agricultural sector. Specifically, the likelihood a country has a comparative advantage in a set 

of products depends not only on a randomly drawn technological productivity-augmenting 

parameter, but also a set of country and product-specific characteristics including land and 

climate.  For example, agricultural R&D in the US might generate a disease-resistant variety 

of bananas, but the land and climate requirements for growing bananas means the United 

States is unlikely to be a competitive exporter, and would therefore not be affected by any 

changes in the banana-importing regime of the EU. 

Alternatively, the US has a technological advantage in producing genetically-modified 

corn for which it also has the appropriate land and climate requirements, and it could face 

increased competition in the Mexican export market from close competitors like Brazil if 

market access for US agriculture were to become more-costly as a result of the NAFTA 

renegotiations. 

Allowing for systematic heterogeneity also means that trade costs may vary across 

products and countries within sectors.  This matters in agriculture where trade costs can 

differ significantly due to the intrinsic characteristics of products and/or the types of trade 
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and other policies applied to those products.  For example, compared to Brazil, the US has 

very low trade costs of exporting corn and soybeans to Mexico, partly due to geographical 

proximity, but also because it has a very efficient storage and transportation system that 

minimizes the cost of spillage etc.  So any increase in trade barriers to Mexican imports from 

the US would be partially mitigated by the higher costs of importing more corn and soybeans 

from Brazil.  Likewise, the costs of the US exporting processed pork products to Mexico will 

have higher handling costs than corn due to the risks of perishability and the need for 

refrigerated transportation.  Importantly, the relative difference between these advantages 

are not likely to be constant. 

Trade policies also vary significantly across countries, with average MFN applied tariff 

rates in agriculture ranging from 1.2 percent in Australia, through 33.5 percent in India, to 

66.7 percent in Egypt (Bagwell, Bown and Staiger, 2016). These average differences in tariffs 

can be captured in standard gravity models, but hide significant differences across products.  

Applied agricultural tariffs exhibit a good deal of heterogeneity across both products and 

countries.  For example, Jales et al. (2005) report that developed countries typically have a 

number of very high agricultural tariffs and a large number of low tariffs, implying low mean 

tariffs with a high degree of tariff dispersion.  By contrast, developing countries tend to have 

higher mean agricultural tariffs, and less tariff dispersion.  In the case of TRQs, 1,400 have 

been introduced since 1995, with over-and in-quota tariffs averaging 123 and 63 percent 

respectively (Jales et al., 2005). 
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4. The systematic heterogeneity model 

The SH model builds on the probabilistic Ricardian model of Eaton and Kortum (2002), 

which captures how the distribution of comparative advantage across products around the 

world drives production and trade patterns.  In the model, the set of products in which a 

country has comparative advantage is determined by the distribution of productivity within 

sectors. As in Eaton and Kortum (2002), comparative advantage is product-specific and is 

generated by differences in productivity.  Unlike Eaton and Kortum (2002) and other 

analyses based on their pioneering work, the specific set of products in which a country has 

comparative advantage within the agricultural sector is systematically influenced by land 

and climate characteristics rather than entirely by chance.  We further allow trade costs to 

vary across products within the agricultural sector.  This allows the influence of comparative 

advantage on trade to be weaker (stronger) for products for which intrinsic characteristics 

or policy barriers make them systematically more expensive (inexpensive) to trade. 

The Model   

The world is comprised of 𝐼 countries engaged in bilateral trade. Importers are indexed by 𝑛 

and exporters by 𝑖. There are two tradable sectors, agriculture and manufacturing, k=A, M, 

and one non-tradable sector. Tradable sectors are each comprised of a continuum of 

products indexed by 𝑗 ∈  [0, 1].  From the buyer’s perspective, individual products are 

distinguished only by their intrinsic characteristics, not by the source country. Countries are 

endowed with consumers who inelastically supply labor 𝑁𝑖 and land 𝐿𝑖 . Labor is allocated 

freely across all three sectors. Land is specific to agriculture. All production is constant 

returns to scale, and markets are perfectly competitive. 
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Productivity  

Heterogeneous productivity within a sector is generated in part by differences in production 

technology.  Following Eaton and Kortum (2002) and the many extensions of their model, 

we model technological productivity, 𝑧𝑖
𝑘 (𝑗), as independently distributed across products 

following a Fréchet distribution with parameters 𝑇𝑖
𝑘 and 𝜃: 

𝐹𝑧𝑛
𝑘 (𝑧) = exp{−𝑇𝑖

𝑘𝑧−𝜃}       𝑘 =  𝐴,𝑀    (1)  

A high value of 𝑇𝑖
𝑘 means that country 𝑖 is more likely to have a high draw of 𝑧𝑖

𝑘 (𝑗), 

implying greater average productivity. A smaller value of 𝜃 >  1 implies a larger dispersion 

of technological productivity.  The value of 𝑧𝑖
𝑘(𝑗) is an outcome of an R&D process that, by 

our independence assumption, can realize higher than average values on any product, 

regardless of product or country characteristics.  The process is equally likely to deliver a 

high value of 𝑧𝐶𝑎𝑛𝑎𝑑𝑎
𝐴 (𝑤ℎ𝑒𝑎𝑡) as it is 𝑧𝐶𝑎𝑛𝑎𝑑𝑎

𝐴 (𝑡𝑜𝑚𝑎𝑡𝑜𝑒𝑠), regardless of the natural advantage 

Canada’s great plains offer for wheat production versus the disadvantage its cold winters 

and short summers imply for tomato production. In fact, despite this disadvantage, Canadian 

producers’ use of greenhouse technology has contributed to its ability to be a competitive 

exporter of some varieties of tomato to the United States.   

In the agricultural sector, the distribution of productivity across products has a second 

component, which is systematically influenced by the characteristics of its land and climate.  

Product-specific land productivity is represented by the random variable 𝑎𝑖(𝑗), which 

reflects the suitability of exporter 𝑖's natural environment for producing product 𝑗.  We 

assume that 𝑎𝑖(𝑗) follows a continuous, parametric density that is a deterministic function of 

exporter 𝑖's agro-ecological characteristics and product 𝑗's agro-ecological production 

requirements.  For example, Mexico is likely to have higher values of 𝑎𝑀𝑒𝑥𝑖𝑐𝑜(𝑡𝑜𝑚𝑎𝑡𝑜𝑒𝑠) and 
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would thus be more likely to have comparative advantage in growing tomatoes, all else equal.  

As such, Mexico is more likely to compete head-to-head with other countries whose climates 

also make them systematically more likely to have comparative advantage in growing 

tomato varieties. 

Production and Trade 

The technology to produce quantity 𝑞𝑖
𝑘 (𝑗) of tradable product 𝑗 combines labor, land, and 

intermediate inputs according to the nested Cobb-Douglas function: 

      𝑞𝑘𝑖(𝑗) =  𝑧𝑖
𝑘(𝑗) (𝑁𝑖

𝛽𝑘(𝑎𝑖(𝑗)𝐿𝑖)
1−𝛽𝑘)

𝛼𝑘

𝑸𝒊
𝑘1−𝛼

𝑘

          𝑘 =  𝐴;𝑀    𝛽𝑀 =  1 (2) 

where 𝑸𝑖
𝑘 is an aggregate of intermediate inputs from all three sectors combined in a Cobb-

Douglas fashion as in Caliendo and Parro (2012): 

𝑸𝑖
𝑘 = 𝑄𝑖

𝐴𝜉𝐴
𝑘

𝑄𝑖
𝑀𝜉𝑀

𝑘

𝑄𝑖
𝑆𝜉𝑆

𝑘

             ∑ 𝜉𝑙
𝑘

𝑙=𝐴,𝑀,𝑆 =  1   (3) 

𝑄𝑖
𝐴 and 𝑄𝑖

𝑀 are individual products from the agricultural and manufacturing sectors 

combined according to a Dixit-Stiglitz technology with elasticity of substitution 𝜎 >  0 

(Equation 4).  Equation links the three sectors.  A high value of, e.g. 𝜉𝑆
𝐴, implies inputs from 

the services sector are important in the production of agricultural products.   

𝑄𝑖
𝑘 = (∫ 𝑞𝑖

𝑘(𝑗)
𝜎−1

𝜎
1

0
𝑑𝑗)

𝜎

𝜎−1
        𝑘 = 𝐴,𝑀    (4) 

The services sector produces a homogeneous good using only labor with productivity 𝑧𝑖
𝑆.  

Producers in exporter 𝑖 face additional costs 𝜏𝑛𝑖
𝑘 (𝑗) ≥ 1 to sell a product in import market 𝑛. 

These trade costs are assumed to take the iceberg form, with 𝜏𝑛𝑛
𝑘 (𝑗)  =  1 and 𝜏𝑛𝑖

𝑘 (𝑗) ≥

𝜏𝑛𝑗
𝑘 (𝑗)𝜏𝑗𝑖

𝑘(𝑗).  
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Differences in trade costs across products influence the extent to which comparative 

advantage creates trade.  As in Eaton and Kortum (2002), we assume trade costs are constant 

for all manufactured products, i.e., 𝜏𝑛𝑖
𝑀(𝑗) =  𝜏𝑛𝑖

𝑀  ∀𝑗.  Trade costs are product-specific for 

agricultural products.  We assume agricultural trade costs follow a continuous, parametric 

density that is a deterministic function of product-specific policies and marketing 

requirements.  We assume 𝜏𝑛𝑖
𝐴 (𝑗) is independent of both 𝑎𝑖(𝑗) and 𝑧𝑖

𝐴(𝑗).  

Trade occurs as buyers in market 𝑛 seek to purchase each product from the source 

country that offers the lowest price.  With perfect competition the prices offered for product 

𝑗, by exporter 𝑖 in market 𝑛 are: 

𝑝𝑛𝑖
𝐴 (𝑗) =

𝑎̃𝑖(𝑗)𝑐𝑖
𝐴𝜏𝑛𝑖

𝐴 (𝑗)

𝑧𝑖
𝐴(𝑗)

    𝑎𝑛𝑑     𝑝𝑛𝑖
𝑀(𝑗) =

𝑐𝑖
𝑀𝜏𝑛𝑖

𝑀

𝑧𝑖
𝑀(𝑗)

    (5) 

where 𝑎̃𝑖(𝑗) =  𝑎𝑖(𝑗)
−𝛼𝐴(1−𝛽𝐴) and 𝑐𝑖

𝑘is the cost of a sector 𝑘 input bundle. For cost-

minimizing producers: 

𝑐𝑖
𝑘 = 𝜅𝑘𝑤𝑖

𝛼𝑘𝛽𝑘
 𝑟𝑖
𝛼𝑘(1−𝛽𝑘)

𝑝𝑖
𝐴(1−𝛼

𝑘)𝜉𝐴
𝑘

𝑝𝑖
𝑀(1−𝛼

𝑘)𝜉𝑀
𝑘

   (6) 

where 𝜅𝑘 is a constant, 𝑤𝑖
𝑘 is the wage, 𝑟𝑖

𝑘 is the land rental rate, and 𝑝𝑖
𝑘 is a price index for 

intermediate goods produced by sector 𝑘. 

The set of products in which a country has comparative advantage are those for which 

it is most likely to have the lowest price offer.  Similar to Eaton and Kortum (2002), the set 

of manufacturing products in which a country has comparative advantage is determined 

solely by random realizations of 𝑧𝑖
𝑀(𝑗). Specialization patterns in the agricultural sector are 

also non-randomly influenced by the distribution of 𝑎𝑖(𝑗) and 𝜏𝑛𝑖
𝐴 (𝑗). A model that does not 

account for product-specific land productivity based on systemic factors would neither 

account for Mexico’s systematic advantage due to the suitability of its land and climate for 
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tomato production, nor would it account for the systematically larger trade cost advantage 

of Mexico and Canada in tomatoes compared to, e.g., rice, which is less perishable and 

therefore easier to store and transport. 

Equilibrium 

Equilibrium consists of factor prices 𝑤𝑖 and 𝑟𝑖, price indices for tradable goods 𝑝𝑖
𝐴 and 𝑝𝑖

𝑀, 

bilateral trade shares 𝜋𝑛𝑖
𝐴  and 𝜋𝑛𝑖

𝑀 , and labor allocation rules such that producers and 

consumers are optimizing, factor and product markets clear, and trade is balanced.  

Given the aggregation technology buyers use to assemble individual goods from each 

sector, Caliendo and Parro (2012) and Shikher (2012) show that our assumptions on the 

trade costs and technology of the manufacturing sector imply that a unit price index for the 

manufacturing sector is: 

𝑝𝑛
𝑀 = 𝛾Ω𝑛

𝑀−
1

𝜃      (7) 

where Ω𝑛
𝑀 = ∑ 𝑇𝑙

𝑀(𝑐𝑙
𝑀𝜏𝑛𝑙

𝑀)−𝜃𝐼
𝑙=1 , 𝛾 = Γ [

𝜃+1−𝜎

𝜃
]

1

1−𝜎
, and Γ(∙)is the gamma function.  Heerman 

(2016) shows that an agricultural price index is: 

𝑝𝑛
𝐴 = 𝛾 (∫Ω𝑛

𝐴(𝑗)
𝜎−1

𝜃 𝑑𝐹𝑎𝑛(𝒂̃)𝑑𝐹𝜏𝑛
𝐴(𝝉𝑨))

1

1−𝜎

   (8) 

where Ω𝑛
𝐴(𝑗) = ∑ 𝑇𝑙

𝐴 (𝑎̃𝑙(𝑗)𝑐𝑙
𝐴𝜏𝑛𝑙

𝐴 (𝑗))
−𝜃

𝐼
𝑙=1  and 𝑑𝐹𝑎𝑛(𝒂̃)𝑑𝐹𝜏𝑛

𝐴(𝝉) is the joint density of 𝒂̃  =

 [𝒂̃𝟏, … , 𝒂̃𝑰] and 𝝉𝑨  =  [𝝉𝒏𝟏
𝑨 , … , 𝝉𝑰(𝑰−𝟏)

𝑨 ] over agricultural products consumed in import market 

𝑛. 

Invoking the law of large numbers, Eaton and Kortum (2002) show that the share of 

expenditure spent on imports from country 𝑖 is equal to the probability it offers the lowest 

price: 
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Pr (𝑝𝑛𝑖
𝑀(𝑗) = 𝑝𝑛

𝑀(𝑗)) ≡ 𝜋𝑛𝑖
𝑀 =

𝑇𝑖
𝑀(𝑐𝑖

𝑀𝜏𝑛𝑖
𝑀)

−𝜃

∑ 𝑇𝑙
𝑀(𝑐𝑙

𝑀𝜏𝑛𝑙
𝑀)

−𝜃𝐼
𝑙=1

   (9) 

An exporter's share of market 𝑛’s expenditure on a specific agricultural products is 

likewise equivalent to the probability that it offers the lowest price for that product.  Since 

land productivity and trade costs are distributed independently of each other, this can be 

expressed as follows: 

Pr (𝑝𝑛𝑖
𝐴 (𝑗) = 𝑝𝑛

𝐴(𝑗)) ≡ 𝜋𝑛𝑖
𝐴 = ∫

𝑇𝑖
𝐴(𝑎̃𝑖𝑐𝑖

𝐴𝜏𝑛𝑖
𝐴 )

−𝜃

∑ 𝑇𝑙
𝐴(𝑎̃𝑙𝑐𝑙

𝐴𝜏𝑛𝑙
𝐴 )

−𝜃𝐼
𝑙=1

𝑑𝐹𝑎𝑛(𝒂̃)𝑑𝐹𝜏𝑛
𝐴(𝝉𝑨)  (10) 

This expression is derived in Heerman (2016).  Notice that the numerator in Equations 9 and 

10 is country 𝑖’s contribution to the sectoral price index.  Thus, if 𝜋𝑛𝑖
𝑘  is large, production and 

trade costs in exporter 𝑖 have a large influence on sector 𝑘 prices in country 𝑛. 

The consumer's problem is to choose quantities of individual products 𝑞𝑖
𝑘(𝑗) from all 

three sectors to maximize utility: 

𝑢𝑖(𝑄)  =  𝑄𝑖
𝐴𝜆

𝐴

𝑄𝑖
𝑀𝜆𝑀

𝑄𝑖
𝑆𝜆
𝑆

     (11) 

subject to the budget constraint: 𝑋𝑖 = 𝑤𝑖𝑁𝑖 + 𝑟𝑖𝐿𝑖. Here 𝑄𝑖
𝑘 is the sector 𝑘’s aggregate 

defined by Equation 4.  This utility function implies that consumers spend a constant share 

𝜆𝑘 of their total income on products from sector 𝑘. 

Individual products are purchased by consumers for final consumption and by 

producers as intermediate inputs.  Total demand for sector 𝑘’s goods is thus: 

𝑋𝑖
𝑘 = 𝜆𝑘𝑋𝑖 + (1 − 𝛼

𝑘)(𝜉𝑘
𝑀𝑌𝑘

𝑀 + 𝜉𝑘
𝐴𝑌𝑘

𝐴 )    (12) 

where 𝑌𝑖
𝑘 is country 𝑖's gross sector 𝑘 production and (1 − 𝛼𝑘)(𝜉𝑘

𝑀𝑌𝑘
𝑀 + 𝜉𝑘

𝐴𝑌𝑘
𝐴 ) is demand 

for sector 𝑘 intermediate inputs. 
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To solve the model for equilibrium, we follow Levchenko and Zhang (2014). Trade 

balance and market clearing conditions imply: 

𝑌𝑖
𝑘 = 𝜆𝑖

𝑘𝑋𝑖 + (1 − 𝛼𝑘)(𝜉𝑘
𝑀 ∑ 𝜋𝑛𝑖

𝑀𝑋𝑛
𝑀𝐼

𝑛=1 + 𝜉𝑘
𝐴∑ 𝜋𝑛𝑖

𝐴 𝑋𝑛
𝐴𝐼

𝑛=1 )      𝑘 =  𝐴;𝑀  (13) 

First order conditions of the producer's problem deliver optimal labor force allocations: 

                                                        𝑌𝑖
𝑘 =

𝑤𝑖𝑁𝑖
𝑘

𝛼𝐴𝛽𝐴
                                                                               (14) 

and labor market clearing implies: 𝑁𝑖 = ∑ 𝑁𝑖
𝑘

𝑘=𝐴,𝑀,𝑆 .  Finally, land rent is obtained from the 

agricultural producer's problem: 

                                                
𝑟𝑖𝐿𝑖

𝛼𝐴(1 − 𝛽𝐴)
=
𝑤𝑖𝑁𝑖

𝐴

𝛼𝐴𝛽𝐴
                                                                      (15) 

and the non-tradeable sector price index is 𝑝𝑖
𝑆 = 𝑤𝑖.  

Trade Elasticity  

Heerman et al. (2015) show that in the SH gravity model, elasticity of market share with 

respect to a change in bilateral trade costs between exporter 𝑖 and the importing country 𝑛 

can be written as, and for simplicity dropping the k superscript: 

             
𝜕𝜋𝑛𝑖
𝜕𝜏𝑛𝑙

𝜏𝑛𝑙
𝜋𝑛𝑖

=

{
 
 

 
 −𝜃((1 − 𝜋𝑛𝑖) −

1

𝜋𝑛𝑖
𝑣𝑎𝑟(𝜋𝑛𝑖(𝑗))) 𝑙 = 𝑖

𝜃

𝜋𝑛𝑖
(𝑐𝑜𝑣(𝜋𝑛𝑖(𝑗), 𝜋𝑛𝑙(𝑗)) + 𝜋𝑛𝑖 × 𝜋𝑛𝑙)  𝑙 ≠ 𝑖

                               (E1) 

Elasticities depend on cross-product differences in 𝜋𝑛𝑖(𝑗), with 𝑣𝑎𝑟(𝜋𝑛𝑖(𝑗)) and 

𝑐𝑜𝑣(𝜋𝑛𝑖(𝑗), 𝜋𝑛𝑙(𝑗)) functions of the distributions of 𝑎𝑖(𝑗) and 𝜏𝑛𝑖(𝑗).  The direct effect of lower 

bilateral trade costs is decreasing in 𝑣𝑎𝑟(𝜋𝑛𝑖(𝑗)).  This implies that market share is less 

elastic for exporters that specialize in products for which competition is less intense, or for 

which trade costs remain high.  The indirect effect of a change in a competitor’s bilateral 
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trade costs is increasing in 𝑐𝑜𝑣(𝜋𝑛𝑖(𝑗), 𝜋𝑛𝑙(𝑗)).  The indirect elasticity will therefore be larger 

among competitors with similar distributions of 𝑎𝑖(𝑗), and further augmented when 𝜏𝑛𝑖(𝑗) is 

also similar.   

In a standard gravity model 𝜋𝑛𝑖(𝑗) = 𝜋𝑛𝑖: the probability of comparative advantage in 

an individual product does not depend on product or exporter characteristics.  Every 

exporter is thus equally likely to offer the lowest price in every agricultural product and 

𝑣𝑎𝑟(𝜋𝑛𝑖(𝑗)) = 𝑐𝑜𝑣(𝜋𝑛𝑖(𝑗), 𝜋𝑛𝑙(𝑗)) = 0. Therefore, trade elasticities are a constant 

proportion of market share:    

                              
𝜕𝜋𝑛𝑖
𝜕𝜏𝑛𝑙

𝜏𝑛𝑙
𝜋𝑛𝑖

= {
−𝜃(1 − 𝜋𝑛𝑙) 𝑙 = 𝑖

𝜃𝜋𝑛𝑙  𝑙 ≠ 𝑖
                                                          (E2) 

These latter elasticities, which characterize the manufacturing sector in our model, are a 

representation of the IIE property, which is imposed in every structural gravity model 

derived from a trade model that assumes a CES import demand system.3   

 

5. Specification and data 

We estimate parameters of the productivity and trade cost distributions for agriculture as in 

Heerman et al. (2015) by specifying Equation 10 as a random coefficients logit model. For 

the manufacturing sector, we follow Eaton and Kortum (2002) and others and specify a log-

linear model from Equation 9.  We begin as in Eaton and Kortum by defining 𝑆𝑖
𝑘 =

ln(𝑇𝑖
𝑘) − 𝜃 ln(𝑐𝑖

𝑘). This is exporter 𝑖’s average sector 𝑘 technological productivity adjusted 

for unit production costs. 

                                                           
3 In an exchange economy setting with factor demands, Adao et al. (2017) also relax the IIE assumption, 
generating equivalent elasticities that nest the case of CES factor demand.    
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Land Productivity Distribution 

We specify 𝑎𝑖( 𝑗) as a parametric function of exporter agro-ecological characteristics and 

product agro-ecological requirements: 

𝑙𝑛(𝑎𝑖( 𝑗))  =  𝑿𝑖𝜹( 𝑗)  =  𝑿𝑖𝜹 + 𝑿𝑖  (𝑬( 𝑗)𝚲)
′ + 𝑿𝑖(𝜈𝐸( 𝑗)𝚺𝐸)

′  (16) 

where 𝑿𝑖  is a 1 × 𝑘 vector of variables describing country 𝑖’s agro-ecological characteristics; 

𝜹 is a 𝑘 × 1 vector of coefficients; 𝑬( 𝑗) is a 1 × 𝑚 vector of product 𝑗-specific agroecological 

production requirements that can be observed and quantified; 𝚲 is an 𝑚 × 𝑘 matrix of 

coefficients that describes how the relationship between elements of 𝑿𝑖  and land 

productivity varies across products with 𝑬( 𝑗); and 𝝂𝐸( 𝑗) is a 1 × 𝑘 vector that captures the 

effect of unobservable product 𝑗-specific requirements with matrix 𝚺𝑬.   

We specify three types of exporter characteristics—agricultural land, elevation, and 

climate:  

𝑿𝑖 = [𝑎𝑙𝑖 𝑒𝑙𝑣𝑖 𝑡𝑟𝑝𝑖 𝑡𝑚𝑝𝑖 𝑏𝑜𝑟𝑖] 

where 𝑎𝑙𝑖 is the log of arable land per capita, 𝑒𝑙𝑣𝑖  is the share of rural land between 800 and 

3000 meters above sea level, and the remaining elements are the shares of total land area in 

tropical, temperate, and boreal climate zones. The vector 𝑗 = [𝑬( 𝑗) 𝝂𝑬( 𝑗)] defines 

products in terms of their suitability for production under the conditions defined by 𝑿𝑖 .  We 

define:  

𝑬( 𝑗) = [𝑎𝑙𝑤( 𝑗) 𝑒𝑙𝑣( 𝑗) 𝑡𝑟𝑝( 𝑗) 𝑡𝑚𝑝( 𝑗) 𝑏𝑜𝑟( 𝑗)] 

where 𝑎𝑙𝑤( 𝑗) describes product- 𝑗 land requirements, 𝑒𝑙𝑣( 𝑗) captures its elevation 

requirements, and 𝑡𝑟𝑝( 𝑗), 𝑡𝑚𝑝( 𝑗), and 𝑏𝑜𝑟( 𝑗) describe climate requirements.  These 

variables relate exporter 𝑖’s agro-ecological characteristics to absolute advantage in 
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agriculture through 𝑿𝑖𝜹 and describe how they systematically influence the set of products 

within the agricultural sector in which it has comparative advantage through 𝑿𝑖  (𝑬( 𝑗)𝚲)
′.  

Trade Cost Distribution 

We specify product- 𝑗 trade costs as: 

𝑙𝑛(𝜏𝑛𝑖
𝑘 ( 𝑗))  =  𝒕𝑛𝑖𝜷

𝒌( 𝑗)  =  𝒕𝑛𝑖𝜷
𝒌  + 𝑒𝑥𝑖

𝑘 + 𝒕𝑛𝑖 (𝝂𝑡𝑛
𝑘 ( 𝑗)𝚺𝑡

𝑘)′ + 𝜉𝑛𝑖
𝑘  (17) 

where 𝒕𝑛𝑖 is a 1 × 𝑚 vector describing the relationship between exporter 𝑖 and import 

market 𝑛, 𝜷𝒌 is an 𝑚 × 1 vector of parameters; 𝑒𝑥𝑖
𝑘  is an exporter-specific trade cost 

captured by a fixed effect; 𝝂𝑡𝑛
𝑘 ( 𝑗) is a 1 × 𝑚 vector that captures the effect of unobservable 

product 𝑗-specific trade costs with scaling matrix 𝚺𝒕
𝒌, and 𝜉𝑛𝑖

𝑘  captures unobservable or 

unquantifiable bilateral trade costs that are common across products and orthogonal to the 

regressors.4  We define:  

𝒕𝑛𝑖  = [𝑏𝑛𝑖 𝑙𝑛𝑖 𝑟𝑡𝑎𝑛𝑖 𝒅𝑛𝑖]  

where 𝑏𝑛𝑖, 𝑙𝑛𝑖 and 𝑟𝑡𝑎𝑛𝑖 equal one if the two countries share a common border or language 

or are members of a common regional free trade agreement. The 1 × 6 vector 𝒅𝑛𝑖  assigns 

each country pair to one of six distance categories as defined in Eaton and Kortum (2002, 

see Table 1).   

Estimating Productivity and Trade Cost Distribution Parameters  

Using our definitions of 𝑎𝑖( 𝑗) and 𝜏𝑛𝑖
𝐴 ( 𝑗) in Equation 10, we obtain a random coefficients 

logit model of agricultural market share: 

                                                           
4 Given our assumption that manufacturing trade costs are constant across products, Equation 17 becomes: 

𝑙𝑛(𝜏𝑛𝑖
𝑀) =  𝒕𝑛𝑖𝜷

𝑴  + 𝑒𝑥𝑖
𝑀 + 𝜉𝑛𝑖

𝑀 . 
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              𝜋𝑛𝑖  = ∫
exp{𝑆𝑖 + 𝜃𝛼𝑖(1 − 𝛽𝑖)𝑿𝑖𝜹(𝑗) − 𝜃𝒕𝑛𝑖𝜷(𝑗)}

∑ {𝑆𝑖 + 𝜃𝛼𝑙(1 − 𝛽𝑙)𝑿𝑙𝜹(𝑗) − 𝜃𝒕𝑛𝑙𝜷(𝑗)}
𝐼
𝑙=1

𝑑𝐹̂𝐸𝑛(𝑬)𝑑𝐹̂𝝂𝑛(𝝂)                 (18) 

where 𝑑𝐹̂𝐸𝑛(𝑬)𝑑𝐹̂𝝂𝑛(𝝂) is the empirical density of products imported by market 𝑛 defined 

jointly by their land and climate characteristics, unobserved agro-ecological requirements 

and trade costs. We estimate Equation 18 using a simulated method of moments approach 

similar to that in Berry, Levinsohn, and Pakes (1995), which is detailed in Nevo (2000) and 

Train (2009). To evaluate the integral, we use the “smooth simulator” suggested by Nevo 

(2000): 

                             𝜋̂𝑛𝑖  =
1

𝑛𝑠
∑

exp{𝑆̃𝑖 + 𝜃𝛼𝑖(1 − 𝛽𝑖)𝑿𝑖𝜹(𝑗) − 𝜃𝒕𝑛𝑖𝜷(𝑗)}

∑ {𝑆̃𝑖 + 𝜃𝛼𝑙(1 − 𝛽𝑙)𝑿𝑙𝜹(𝑗) − 𝜃𝒕𝑛𝑙𝜷(𝑗)}
𝐼
𝑙=1

ns

j=1

                               (19)    

where 𝑆̃𝑖  =  𝑆𝑖  + 𝜃𝛼𝑖 (1 − 𝛽𝑖)𝑿𝒊𝜹 is a country fixed effect. We use the minimum distance 

procedure suggested by Nevo (2000) to obtain 𝑆̂𝑖 and 𝜹 from 𝑆̂̃𝑖.  

To estimate productivity and trade cost parameters in the manufacturing sector, we 

follow Eaton and Kortum (2002), Waugh (2010) and others, using 𝑆𝑖
𝑀 and the definition of 

manufacturing trade costs in Equation 9, and then use linear methods to estimate: 

                                                 ln (
𝜋̂𝑛𝑖
𝑀

𝜋̂𝑛𝑛
𝑀 )   = 𝑆𝑖

𝑀 − 𝑆𝑛
𝑀 − 𝜃𝒕𝑛𝑖𝜷

𝑴                                                          (20) 

Data 

Parameters of the distributions of productivity and trade costs are estimated using 

production and trade data from 2006, the most recent year for which we have a complete 

data set for both sectors.  The age of the data used to parameterize the model is a 

disadvantage to the extent that the data do not capture structural changes in supply and 

demand stemming from income and productivity growth, as well as changes in trade and 

other policies that affect bilateral market access.  However, sources of natural resource-
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based comparative advantage can be assumed to be unchanged, and differences in relative 

average technological productivity can be assumed to be small.  In future work, we will 

update the model to more recent years by simulating changes in policy and average 

productivity.   

Sector-level bilateral market shares are calculated by dividing bilateral import value by 

sector-level expenditure, calculated as 𝑋𝑖
𝑘 = 𝑌𝑖

𝑘 + 𝐸𝑋𝑖
𝑘 − 𝐼𝑀𝑖

𝑘 .  Domestic market share is 

calculated as 𝜋𝑛𝑛
𝑘 = 1 − ∑ 𝜋𝑛𝑖

𝑘
𝑖≠𝑛 .  For the agricultural sector, our data consist of the 134 

agricultural items for which data on both bilateral trade and the gross value of production in 

US dollars are available (FAO, 2013).  These are mostly primary agricultural products.  Data 

on bilateral market shares for the manufacturing sector are calculated using 2006 

production and trade data from CEPII.5  Elements of 𝒕𝑛𝑖 are obtained from the CEPII gravity 

data set (Head, Mayer, and Ries, 2009). 

We do not observe land and climate requirements for each product, but we do observe 

conditions of their production around the world.  We use observable characteristics of 

exporting countries to construct a matrix of “observable” product requirements, 𝑬( 𝑗), for 

each of the 𝐽 =  134 items for which the FAO publishes both production and trade data.  This 

approach is valid under two assumptions. First, 𝑬( 𝑗) is distributed across products following 

the empirical distribution of requirements for agricultural products defined at the “item” 

level by the FAO. Second, exporting is positively correlated with high natural resource 

productivity.  We measure 𝑒𝑙𝑣( 𝑗) and 𝑎𝑙𝑤( 𝑗) as in Heerman et al. (2015) as the export-

weighted average of exporters’ share of land at high elevation (𝑒𝑙𝑣𝑖) and arable land per 

                                                           
5 Manufacturing production value is interpolated from previous years for some countries. 
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agricultural worker (𝑎𝑙𝑤𝑖), using data on arable land per capita and land per agricultural 

worker from World Bank (2012) and elevation data from CIESIN (2010), respectively.  

Notice that we define the land intensity of product 𝑗 using data on land per agricultural 

worker, whereas we use agricultural land per capita in 𝑿𝑖 . The motivation for this distinction 

is that elements of 𝑿𝑖  represent the factors that influence exporter 𝑖’s potential comparative 

advantage, whereas elements of 𝑬( 𝑗) represent the ideal conditions under which product 𝑗 

is produced. Products are represented by their observed production conditions, but 

countries are represented by their potential production conditions. 

Defining product requirements as export-weighted averages of country characteristics 

has the potential of being imprecise. Many important agricultural exporters have varied 

terrain and climate within their borders. For example, Canada supplied about 20 percent of 

global wheat exports in 2006. However, while a large share of Canada’s total land area is in 

the boreal climate zone, the country’s wheat production is concentrated in temperate 

regions. A trade-weighted average of climate distributions would thus misrepresent wheat’s 

climate requirements. 

We improve on the measurement of product-specific climate requirements used in 

Heerman et al. (2015), taking advantage of information on product-specific production 

across climate zones within countries provided by the GTAP land use database (Lee et al., 

2005). As part of an effort to model the impact of climate change on the agricultural sector, 

the database provides estimates of land rent for ten product categories in 18 agro-ecological 

zones (AEZs) within in each of several countries. 

An AEZ is a defined zone based on soil, landform and climactic characteristics.  A 

country’s estimated land rent in AEZ 𝑥 for crop 𝑦 is calculated by by apportioning the crop’s 



  

26 
 

total land rent across AEZ’s in proportion to its share in the value of crop 𝑦 production. To 

calculate product climate requirements, we assign each of the crops in our data set to one of 

the ten GTAP aggregates. We then calculate the share of land rent in each zone and aggregate 

these shares into a distribution of land rent across tropical, temperate and boreal climate 

zones for each product, country pair. Finally, we define product 𝑗 climate requirements as 

the export-weighted average of these land rent distributions. The GTAP land use database 

does not calculate a distribution of land rent across climate zones for animal products. We 

use export-weighted averages of country climate distributions, as we did for land and 

elevation intensity, to calculate [𝑡𝑟𝑝( 𝑗)  𝑡𝑚𝑝( 𝑗) 𝑏𝑜𝑟( 𝑗)] for these products. 

The 𝑛𝑠 = 900 products used to evaluate Equation 19 for each importer and its trading 

partners are drawn from 𝑑𝐹̂𝐸𝑛(𝑬)𝑑𝐹̂𝝂𝑛(𝝂). We construct this density as in Heerman et al. 

(2015), first using FAO item level import data to estimate 𝑑𝐹̂𝐸𝑛(𝑬), the empirical distribution 

of 𝑬( 𝑗) across products imported by each market by compiling a list of 1,000 imported items 

defined by the vector 𝑬( 𝑗) for each market 𝑛. Unique values of 𝑬( 𝑗) are represented in 

𝑑𝐹̂𝐸𝑛(𝑬) in proportion to the associated FAO item’s share in total imports. That is, if 15 

percent of importer 𝑛’s total agricultural imports consist of the FAO item “wheat,” then 

𝐸(𝑤ℎ𝑒𝑎𝑡) makes up 150 entries on 𝑑𝐹̂𝐸𝑛(𝑬). Next we make uniform draws of 𝑬( 𝑗) from each 

country’s distribution. The distribution is completed by associating each item on the list 

with 𝜈𝑛( 𝑗) = [𝝂𝑬(𝑗) 𝝂𝒕𝒏(𝑗)] drawn from a standard multivariate normal distribution, 

effectively generating a “data set” of 900 unique products imported by each market.  

In addition to the estimated parameters that define the productivity distribution, 

computing world equilibrium requires data on labor and land endowments, values for utility 

and production function parameters, and the elasticity of substitution, 𝜎. Data on arable land 
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in hectares and total labor force are obtained from the World Bank World Development 

Indicators (World Bank, 2012). Table 2 summarizes all of the structural parameters. 

 

6. Estimated productivity distribution and base model solution 

Land Productivity Distribution 

Table 3 contains estimates for the land productivity distribution parameters 𝜹, 𝚲, and 𝚺𝑬. 

The total effect of each exporter characteristic in 𝑿𝑖  on the probability of comparative 

advantage in a given product, 𝜋𝑛𝑖( 𝑗) is the sum of the mean effect in the first column and the 

product-specific effects in the columns that follow. 

Coefficients on all climate variables are normalized to sum to zero. As such, coefficients 

on exporter climate characteristics are interpreted with respect to the average climate, and 

the effects of product-specific climate requirements are interpreted with respect to the 

average production requirement.  The positive mean effect on tropical land share (𝛿𝑡𝑟𝑝  =

 0.7) implies that having more than the average share of land in a tropical climate increases 

agricultural market share on average. The positive and larger coefficient on 𝑡𝑟𝑝( 𝑗) 

(𝜆𝑡𝑟𝑝,𝑡𝑟𝑝 =  6.86) implies this effect is increasing for products that are more intensively 

tropical than average.  Negative coefficients imply the advantage of tropical land is 

decreasing for more intensively boreal products (𝜆𝑡𝑟𝑝,𝑏𝑜𝑟 = −7.4) and elevation-intensive 

products (𝜆𝑡𝑟𝑝,𝑒𝑙𝑣 = −3.96). 

Figure 1 illustrates the distribution of the total effect of high elevation land across the 

products in our constructed data set.  High elevation land decreases the probability of having 

the lowest price for some products, but raises it for most.  The mean effect of a higher than 

average amount of land at high elevation acreage is positive (𝛿𝑒𝑙𝑒𝑣  =  1.14).   This implies 
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that having more land at high elevation increases agricultural market share on average. 

However, this benefit is substantially diminished for products more intensively produced in 

temperate climates than the average product (𝜆𝑒𝑙𝑒𝑣,𝑡𝑚𝑝 = −12.32). In contrast, the benefit is 

greatly magnified for products that are more intensely boreal than the average product 

(𝜆𝑒𝑙𝑒𝑣,𝑏𝑜𝑟 = 11.01). Boreal climates are associated with high elevation, therefore, we expect 

to see countries with higher than average acreage at high elevations are more likely to 

specialize in boreal crops.  The statistically and economically insignificant value of the 

estimated coefficient on unobservable product characteristics (𝜎𝑒𝑙𝑒𝑣  =  −0.21), implies that 

variation in the effect of high elevation across products is sufficiently explained by the 

product requirements in 𝑬( 𝑗).  

Estimates for 𝑆̂̃𝑖
𝐴 and 𝑆̂𝑖

𝑀are listed in Table A3.  These values are normalized to sum to 

zero and are thus interpreted as average sector-level productivity relative to the average 

country, and in the case of agriculture, in the average product. Recall that 𝑆̂̃𝑖
𝐴 and 𝑆̂𝑖

𝑀 are 

increasing in average technological (and land productivity in the agricultural sector), but 

decreasing in costs of production 𝑐𝑖
𝑘. Therefore, a country with high average productivity 

may nevertheless have a small 𝑆̂𝑖
𝑘 if it has, e.g., very high wages or land rental rates.  Values 

of 𝑇̂𝑖
𝑘 are obtained from 𝑆̂𝑖

𝑘 as in Waugh (2010). 

Trade Costs 

Table 4 contains estimates for the agricultural trade cost distribution parameters 𝜷𝑨 and 𝚺𝒕
𝑨 

and the manufacturing trade cost parameters 𝜷𝑴. Positive coefficient values in 𝜷𝑨 and 𝜷𝑴 

imply higher trade costs, but lower expected market share. Elements of 𝚺𝒕
𝑨 capture 

heterogeneity in the effect of each element of 𝒕𝑛𝑖
𝐴  across agricultural products and can thus 

be interpreted like a standard error around the mean effect.  
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In the agricultural sector, positive mean effects imply that sharing a common language 

and participating in an RTA increases market share on average, while negative coefficients 

imply increasing distance tends to decrease it. The negative mean effect of sharing a border 

(𝛽𝑏
𝐴  =  −1.76) may seem counterintuitive. However, the relatively larger magnitude of the 

estimated standard error (𝜎𝑏  =  3.13) implies sharing a border increases market share for 

some products and decreases it for others. Sharing a border may reduce trade in individual 

products for a number of reasons.  For example, agricultural policies often systematically 

advantage domestic producers relative to their close competitors.   

Coefficient estimates on the components of trade costs in the manufacturing sector are 

generally similar to the agricultural sector.  Smaller magnitude coefficients on the distance 

variables suggest in manufactured products are less costly to transport than agricultural 

products on average.  This is sensible since agricultural products are often perishable or 

otherwise require special handling.  The positive and significant effect implies sharing a 

border unambiguously increases manufactured products market share on average (𝛽𝑏
𝑀 =

0.82). 

Values of 𝑒𝑥̂𝑖
𝑘 are reported in Table A3. The values are normalized to sum to zero, so 

positive (negative) values imply that exporter 𝑖 is a lower (higher)-than-average-cost 

exporter.  Our results suggest that Belgium, Canada and the United States are the lowest-cost 

exporters of agricultural products.   The United States and the Netherlands are the lowest-

cost exporters of manufactured products. 

Elasticities 

Parameter estimates in Tables 3 and 4 allow us to calculate predicted market share 

(Equation 19) and elasticities using the formulas underlying Equation E1.  To see how the 
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SH gravity model overcomes the limitations of imposing the IIE property highlighted in 

Arkolakis et al. (2012), we show that the predicted elasticities are not a constant proportion 

of market share, as the standard model predicts (Equation E2).   

By way of example, we calculate the ratio of the elasticity to Mexican trade costs to 

market share in Canada, that is 
𝜕𝜋𝑛𝑖

𝜕𝜏𝑛𝑙

𝜏𝑛𝑙

𝜋𝑛𝑖
/𝜋𝑛𝑙, where 𝑙 =Mexico, 𝑖 ≠ Mexico and 𝑛=Canada.  

Since the relevant elasticity is a direct elasticity for 𝑖=Mexico, we divide the elasticity by 

(1 − 𝜋𝐶𝑎𝑛𝑀𝑒𝑥). This ratio would be a the same (equal to 𝜃) for every country in the standard 

model.   In the SH model the ratio varies dramatically depending on characteristics of the 

exporter and the products they export to Canada.  Table 5 reports this ratio for the countries 

with the largest share of Canadian expenditure on the products in our data set.  The SH 

gravity model predicts that Colombia, Chile and Indonesia, who are more likely to compete 

with Mexico, would gain disproportionately from higher Mexican trade costs, whereas gains 

in Canadian and US market share will be proportionately smaller.   

General Equilibrium Solution 

We use a two-step process similar to that outlined in Levchenko and Zhang (2014) to solve 

the model. In step one, given a vector of unobserved trade costs (𝝃̅), the data, the parameters 

described in Table 3, and an initial guess for a vector of wages, (𝒘̅), land rent, (𝒓̅), we solve 

for equilibrium, beginning by solving for 𝒑𝑨 and 𝒑𝑴 consistent with the guessed values 

(Equations 7 and 8), and simulating the integral in Equation 8 as: 

𝑝𝑛
𝐴 =

𝛾

𝑛𝑠
(∑ Ω𝑛

𝐴(𝒘̅; 𝑗)
𝜎−1

𝜃𝑛𝑠
𝑗=1 )

1

1−𝜎
     (21) 

using the same 𝑛𝑠 products used to estimate Equation 19.   
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We then calculate the cost of an input bundle in each tradeable sector (Equation 6), 

consumer final demand, 𝑋𝑖
𝑘  =  𝜆𝑘(𝑤𝑖𝑁𝑖  + 𝑟𝑖𝐿𝑖), bilateral market shares (Equations 9 and 

10, simulating the integral as above), total demand for each sector (Equation 12), labor 

allocations (Equation 14) and land rental rates (Equation 15). We adjust the vector of 

guessed wages until labor market clearing conditions hold.  In the next step, 𝝃̅ is adjusted 

until observed and predicted trade shares are sufficiently close.  

 

7. Examining Trans-Pacific Integration 

To explore the effects of Trans-Pacific integration on agricultural trade we run two scenarios 

based on the tariff reductions agreed under the CPTPP.  The benchmark scenario simulates 

tariff cuts agreed under the CPTPP on the products in our data set among CPTPP members.  

In the alternative scenario, the United States obtains equivalent access to CPTPP markets 

and, following Australia, offers free access to the US market on all agricultural products in 

our model.   

We simulate tariff cuts by reducing estimated trade costs product-by-product in the 

amount of the change in each country’s simple average applied MFN tariff and the simple 

average tariff listed in each country’s CPTPP schedule for the tariff lines that make up each 

of our products at full implementation.  We then re-solve the model for a new equilibrium.  

No changes are made to manufacturing sector trade costs, which includes some products 

commonly considered agricultural products.  As such, the results presented here cannot be 

interpreted as the likely results of the CPTPP agreement.  Rather, they serve to highlight the 

likely effects of Trans-Pacific integration on the structure of competition among CPTPP 

participants and the United States in trade in primary agricultural products. 
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The results reported in this paper should be considered preliminary, given our 

treatment of existing RTAs and specific tariffs in the CPTPP schedule.  These assumptions 

imply that we neither fully capture nor isolate the effect of the CPTPP.  These assumptions 

are made purely for expedience and will be addressed in later versions of the paper.   

Since many members have pre-existing RTAs, CPTPP tariff cuts are not taking place from 

global MFN levels.  Importantly, there are bilateral relationships – such as among the NAFTA 

countries - where tariffs were largely zero as of 2006 and could thus not be cut much further.  

To avoid over-estimating the magnitude of the tariff cuts implied by the CPTPP and thus the 

impact of Trans-Pacific integration, we exclude country pairs that had an RTA prior to 2006 

from the modeled tariff cuts.  Thus we implicitly assume the CPTPP does not introduce 

further tariff reductions for countries with pre-existing agreements.  Likewise, we do not 

model tariff cuts under individual RTAs implemented after 2006.  This implies that our 

model assumes that post-2006 agreements do not provide access beyond that offered under 

the CPTPP.   

We have also not modeled product-specific tariff cuts that take the form of specific tariffs 

in this paper.  Neither have we included all cases of expansions in TRQs.  This is an important 

drawback of the results we report here since these policy measures tend to cover import-

competing products.  Including them in future work will likely increase our estimates of the 

trade effects of Trans-Pacific integration under the CPTPP.   

Preliminary counterfactual results 

Table 6 presents the model’s predicted changes in export value in response to tariff cuts 

described above.  The first two columns contain the percent change in the value of 

agricultural exports for each CPTPP member plus the United States.  The first column 
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contains the change in global exports.  The second contains the percent change within the 

Trans Pacific region, defined as the CPTPP countries plus the United States. The model 

predicts that each country’s exports increase under the CPTPP tariff cuts, including the 

United States.  US exports benefit indirectly from the lower cost of importing agricultural 

products as intermediate inputs.  Increases in export value are larger within the region.  This 

implies that increased market access in the Trans-Pacific region is the key driver of expanded 

global exports for these countries. 

The largest beneficiaries in terms of regional exports expansion under the CPTPP tariff 

cuts modeled here are Australia, Canada and Chile.  New Zealand sees the smallest increases 

in exports value, although it should be noted that our definition of the agricultural sector 

excludes many of the products in which New Zealand is a competitive exporter.  Peru’s 

exports expansion is also relatively small under the CPTPP. 

The last two columns present ratios of the percent change in exports value under the 

alternative scenario in which the United States obtains equivalent access to CPTPP markets 

and offers free access to CPTPP countries in return to the benchmark reported in the first 

two columns.  When these ratios take values greater than one, it indicates that exports value 

increases more under the alternative scenario.  Global exports value expands more for every 

country except Australia, for which it is roughly unchanged.  The largest relative increases 

are for New Zealand, Peru and the United States.  The relative increase in global trade value 

for these countries is similar to the increase in regional trade value in all three cases.  For 

New Zealand and Peru6 this implies that the additional access to the United States market is 

driving their export expansion.   

                                                           
6 Note that Peru and the United States have an FTA which came into force after 2006. 
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The final column of Table 6 reveals the model’s prediction that given equivalent access 

to CPTPP markets, Australia, Canada, Chile and Mexico have a particularly large reduction in 

the regional exports expansion in percentage terms when the United States benefits from the 

tariff cuts offered under the CPTPP.  This suggests these countries are the United States’ 

closest competitors in Trans-Pacific markets for the products in our data set.  

 

8. Summary and conclusions 

The preliminary results reported in this paper suggest that Trans-Pacific integration offers 

a substantial opportunity for increased agricultural exports.  Ad valorem tariff cuts under the 

CPTPP on the products included in our dataset increases exports of the agreement’s 

signatories, both regionally and globally.  The additional market access embodied by these 

tariff cuts erodes the competitiveness of the United States in these markets by increasing the 

relative price of US exports.   Nevertheless, US agricultural exports increase on average from 

CPTPP as it lowers the cost of agricultural products used as imported intermediate inputs 

and increases demand for food and agricultural products generally as real incomes rise in 

CPTPP markets.   

As expected, with increased access to CPTPP markets, the value of US agricultural 

exports increases much more than it does under the indirect benefits of the CPTPP.  

Importantly, in contrast to standard gravity modeling approaches, the SH model is able to 

capture the difference in the impact on relative demand when the US is involved in Trans-

Pacific integration versus when integration proceeds without new US access.  The model 

finds that the percent change in exports value for Australia, Canada, Chile and Mexico is 

disproportionately larger under the CPTPP without equivalent US market access.  This 
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implies these are the United States’ closest competitors in the region among CPTPP 

countries.  In contrast, other countries gain relatively more when the US market is integrated.  

Standard gravity-based models of the agricultural sector miss these distinctions.   

There are many limits to the analysis presented here.  First, our base model is calibrated 

with data from 2006, when global trade patterns differed in some important ways, 

particularly in terms of the nature and degree of competition from Brazil and other rising 

exporters and the nature and degree of demand from China and other rising importers.  The 

tariff cuts we model to capture the CPTPP are incomplete.  Moreover, in our scenario analysis 

we abstract from the impact of changes in manufacturing tariffs.  Future work will address 

these and other issues.    
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Tables 

Table 1: Definition of distance variables 

Variable Distance, miles 
Distance 1 [0,375) 
Distance 2 [375,750) 
Distance 3 [750,1,500) 
Distance 4 [1,500,3,000) 
Distance 5 [3,000,6,000) 
Distance 6 [6,000, maximum] 

 

Table 2: Summary of parameter values 

Parameter  Value Source 
𝜹, 𝚲, 𝚺𝑬 Table 4 Estimated from Equation 19  

𝜷𝑨, 𝚺𝒕, 𝒆𝒙
𝑨 Table 3 and Table A3 

 
𝜷𝑴, 𝒆𝒙𝑴 Table 3 and Table A3 Estimated from Equation 20  
𝑻𝐴, 𝑻𝑀 Not reported Estimates of 𝑺̃𝐴 and 𝑺𝑴  
𝜆𝑘, 𝛼𝑘, 𝜉𝑙

𝑘 Tables A1 and A2 
 

Input-Output Tables (OECD 
2013) 

𝛽 0.66 Gollin (2002) 
𝜃 4.12 Simonovska and Waugh 

(2014) 
𝜎 2.00 Ruhl (2008) 

 

Table 3: Land productivity distribution parameter estimates 

Exporter 
Characteristics (𝑿𝑖) 

Mean 
Effects (𝜹) 

Unobserved 
Reqs (𝚺𝐄) 

Agro-Ecological Requirements (𝚲) 
𝒆𝒍𝒗(𝒋) 𝒂𝒍𝒘(𝒋) 𝒕𝒓𝒑(𝒋) 𝒕𝒎𝒑(𝒋) 𝒃𝒐𝒓(𝒋) 

ln Arable Land per 
Ag Worker 0.17*** -0.01  -4.51*** 0.42*** 1.81*** 0.33*** -2.14 
High Elevation 1.14*** -0.21  47.96*** 0.44*** 1.31*** -12.32*** 11.01 
Tropical Climate 
Share 0.7*** -0.16** -3.96*** 0.73*** 6.86*** 0.19  -7.04 
Temp. Climate Share 0.19*** -0.03  1.46*** -0.53*** -2.8*** 0.7*** 2.1 
Boreal Climate Share -0.88*** 0.19** 2.5*** -0.2*** -4.06*** -0.89*** 4.94 

 
***significant at the 1% level, ** significant at the 5% level, *significant at the 10% level. 
 
Note: Values in this table are inclusive of the term 𝜃𝛼𝑖(1 − 𝛽𝑖) 
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Table 4: Trade cost distribution parameters 

 Agriculture  Manufacturing 
Country Pair 
Characteristics 

Mean Effect 
(𝜷𝑨) 

Unobserved Heterogeneity 
(𝚺𝒕) 

 Mean Effect 
(𝜷𝑴) 

Common Border  -1.76*** 3.13***    0.82*** 
Common Language    1.24*** 0.95***    1.10*** 
Common RTA    0.19** -0.11     0.11  
Distance 1  -5.28*** 2.36***  -4.54*** 
Distance 2  -7.67*** 2.33***  -4.96*** 
Distance 3  -7.43*** -0.16   -5.42*** 
Distance 4  -9.95*** 1.37***  -5.71*** 
Distance 5 -11.56*** -0.04   -7.09*** 
Distance 6 -12.94*** 0.64***  -7.67*** 

 

*** significant at the 1% level, ** significant at the 5% level, *significant at the 10% level. 

 

Note: Values in this table are inclusive of the term 𝜃. 

 

 

 

 

Table 5. Trade elasticities are not constant 
 

Source 
country  

𝝏𝝅𝒏𝒊
𝝏𝝉𝒏𝒍

𝝉𝒏𝒍
𝝅𝒏𝒊

/𝝅𝒏𝒊 ∗ 

Canada 3.47 
USA 2.22 
Mexico** -3.70 
Chile 5.56 
Indonesia 6.30 
Colombia 7.03 

                                        ∗ 𝑛 = Canada, 𝑙 = Mexico, 𝑖 = Source country 
                                        **The elasticity of Mexico with respect to Mexican 
                                             trade costs is divided by (1 − 𝜋̂𝑐𝑎,𝑚𝑒𝑥) 
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Table 6: Preliminary Results – Agricultural exports responses to agricultural tariff cuts 

 % Change in agricultural exports value 

 CPTPP countries only Ratio: 
𝑪𝑷𝑻𝑻+𝑼𝑺𝑨

𝑪𝑷𝑻𝑷𝑷 𝑶𝒏𝒍𝒚
 

Country Global Regional* Global Regional* 
Australia 0.17 2.29 1.000 0.905 
Canada 0.56 2.37 1.002 0.949 
Chile 0.09 2.17 1.005 0.790 
Japan 0.27 1.94 1.059 0.994 
Malaysia  0.15 1.73 1.024 1.002 
Mexico 0.42 1.97 1.001 0.631 
New Zealand 0.02 0.05 1.344 1.381 
Peru 0.23 1.16 1.356 1.133 
Vietnam 0.32 1.61 1.032 0.999 
United States  0.07 0.27 1.338 1.322 

*Regional refers to the CPTPP members in our data set plus the United States  
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Figures 

 

Figure 1. Frequency plot - High elevation land effect 
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Appendix Tables 

Table A1: Value added and consumption shares 

𝜶𝑨 𝜶𝑴 𝜶𝑺 𝝀𝑨 𝝀𝑴 𝝀𝑺 
0.49 0.32 0.56 0.05 0.30 0.65 

 

Table A2: Intermediate input shares 

𝝃𝑨
𝑨 𝝃𝑴

𝑨  𝝃𝑺
𝑨 𝝃𝑨

𝑴 𝝃𝑴
𝑴 𝝃𝑺

𝑴 𝝃𝑨
𝑺  𝝃𝑴

𝑺  𝝃𝑺
𝑺 

0.33 0.37 0.30 0.08 0.62 0.30 0.01 0.31 0.68 
 

 

Table A3: Average productivity and exporter cost estimates 

Country 𝑺̂̃𝒊
𝑨 𝒆𝒙̂𝒊

𝑨/𝜽  𝑺̂𝒊
𝑴 𝒆𝒙̂𝒊

𝑴/𝜽 

Argentina 0.86*** 1.17***  0.11  0.24*** 

Australia 0.85*** 0.3***  -0.1  0.35*** 

Austria -1.06*** -0.03   -0.24  0.32*** 

Belgium -8.3*** 2.96***  -1.83*** 0.88*** 

Bolivia 0.34  -1.54***  0.29* -1.28*** 

Brazil 0.7*** 0.69***  0.85*** 0.4*** 

Bulgaria 0.08*** -0.11***  -0.27** -0.26*** 

Canada -5.75*** 2.79***  -0.35*** 0.48  

Chile 1.66*** 1.21***  0.58*** 0.01*** 

China 2.61*** 1.16   1.15** 0.8*** 

Colombia 1.42*** 0***  0.44*** -0.43*** 

Costa Rica 1.15*** -0.81***  -0.56*** -0.36*** 

Cote d'Ivoire 0.56  -0.75***  1.08  -1.27** 

Czech Republic 0** -0.48   -0.16*** 0.16*** 

Denmark 0.44*** 0.04***  -1.53*** 0.53*** 

Ecuador 1.21*** -0.32***  0.58*** -0.63** 

Estonia 2.77  -2.56***  -1.05*** -0.15*** 

Ethiopia -0.37*** -0.96***  -0.96  -1.41*** 

Finland 1.72*** -1.58***  0.1  0.3*** 

France -2.96*** 1.76***  0.18  0.62*** 

Germany -4.87  2.41***  0.21** 0.81*** 

Ghana -0.35*** -1.06   -0.4  -0.94*** 

Greece 1  0.1***  0.13*** -0.24*** 

Honduras -0.24*** -1.35***  -1.44** -0.82  

Hungary 2.1  -0.67***  0.45*** -0.07*** 

Iceland -0.14*** -2.2***  -0.72*** -0.58*** 

India 1.13** 0.57***  0.8  0.31*** 
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Country 𝑺̂̃𝒊
𝑨 𝒆𝒙̂𝒊

𝑨/𝜽  𝑺̂𝒊
𝑴 𝒆𝒙̂𝒊

𝑴/𝜽 

Indonesia 0.55*** 0.78***  0.13*** 0.43*** 

Ireland 2.14*** -1.3   -2  0.63* 

Israel 1.58*** 0.06***  0.11** -0.11*** 

Italy -3.31*** 2***  0.4*** 0.57*** 

Japan -1.68*** 0.75***  1.37*** 0.63*** 

Kazakhstan 0.78** -1.76***  -0.5  -0.68*** 

Kenya -0.51*** -0.7***  0.05  -0.9*** 

Lithuania 2.64*** -2.13***  -0.07* -0.35*** 

Malaysia -2.76** 1.51***  -0.3*** 0.59*** 

Mexico 0.65*** 0.5***  -0.9  0.46*** 

Morocco 1.41*** -0.88***  -0.06*** -0.38*** 

Netherlands -3.12*** 2.16***  -0.66*** 0.71** 

New Zealand 2.8*** 0.35***  -0.5  0.16  

Norway 2.41*** -2.41***  0.14*** 0*** 

Paraguay 1.48*** -0.67   -0.71*** -0.83*** 

Peru 1  0.12   0.49* -0.32* 

Poland -0.2*** 0.03**  0.27*** 0.11*** 

Portugal -1.55*** 0.17***  -1.96*** 0.43*** 

Russia -2.49*** 0.16***  0.62  0.25** 

Slovakia 3.07*** -2.15***  0.12* -0.16*** 

Slovenia 1.63  -2.05***  0.31  -0.4*** 

South Africa -0.07*** 0.41**  -0.26*** 0.32*** 

South Korea 1.85*** -0.21***  1.01  0.52*** 

Spain -3.82*** 2.12   0.23*** 0.4*** 

Sri Lanka 1.36*** 0.11***  2.2  -0.93*** 

Sweden -0.64*** -0.25***  -0.08  0.46*** 

Switzerland -2.46  0.31***  0.23* 0.3*** 

Thailand -0.27*** 0.28***  -0.27*** 0.58*** 

Tunisia 3.04*** -1.13***  1.14* -0.83*** 

Turkey 1.32*** 0.56***  0.26** 0.17** 

Ukraine 1.31*** -0.5***  0.4  -0.13*** 

UK -4.05*** 2.13   0.05  0.57*** 

Uruguay 2.68** -0.12***  0.03*** -0.41*** 

Venezuela 0.62* -2.36***  1.11  -0.62* 

Vietnam 0.4*** 0.35***  -0.03  0.1  

USA -4.36*** 3.04***  0.3*** 0.9*** 
 

***significant at the 1% level, ** significant at the 5% level, *significant at the 10% level 


