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Abstract

We examine the tradeoffs and complementarities that exist among
saving, borrowing, and insurance in managing generic income risk. We
depart from conventional static Von Neumann-Morgenstern Expected
Utility theory by couching the insurance adoption decision in a formal
dynamic framework that explicitly allows for the use of alternative fi-
nancial instruments to manage risk. We find that the standard results
of expected utility theory do not hold when agents may borrow or
save. Access to savings and borrowing “crowds out”, that is, reduces
the demand for, insurance. Agents who have access to borrowing
and saving: 1) do not fully insure at actuarially favorable premium
rates; 2) are less likely to insure at loaded “market” premiums rates;
and 3) may not insure at all, even if premium rates are subsidized,
if they are temporarily poor. We show that the demand for insur-
ance depends, not simply the curvature of the utility of consumption
function, but rather, more generally, on the curvature of the value
function, which we refer to as the “effective risk aversion. Effective
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risk aversion is heavily influenced by market conditions other than an
individuals primitive attitude toward risk, most notably the degree of
access to borrowing and savings.

Introduction

Methods for managing agricultural production risk have been the subject
of an extensive body of research that has appeared in the agricultural eco-
nomics literature over the past forty years, with considerable attention being
devoted to the optimal use of agricultural crop insurance.1 Most theoret-
ical findings regarding the benefits of agricultural crop insurance employ
static Von Neumann-Morgenstern expected utility models in which an agri-
cultural producer’s attitude toward risk is represented by a utility of money
function whose concave curvature captures the producer’s aversion to risk.
Typically, such models predict that a producer can enjoy substantial ben-
efits from purchasing crop insurance, even when the premium exceeds the
expected indemnity.

It is a well-established empirical fact, however, that agricultural producers
employ crop insurance at rates that are substantially less than those pre-
dicted or prescribed by static expected utility models, even when the insur-
ance contracts embody subsidies(see Knight and Coble 1997). A widespread
view among agricultural risk management researchers, policy makers, and ex-
tension agents is that the discrepancy between theory and practice is largely
explained by producers’ ignorance on how best to employ crop insurance in
their production and marketing plans, prompting calls for aggressive public
outreach and extension programs to educate agricultural producers on how
to improve their financial welfare through proper use of crop insurance.

The discrepancy between theory and practice, however, may be due more to
an incomplete theory of decision making under uncertainty than to flawed
agricultural producer practices and perceptions. Agricultural risk manage-
ment studies employing static, expected utility models are unable to ade-

1Between 1970 and 2011, the American Journal of Agricultural Economics alone pub-
lished 649 articles containing “risk” in the title and 137 articles containing “risk” and
“insurance” in the title.
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quately capture effective available alternatives to crop insurance for managing
farm level risk, most notably the use of saving, borrowing, and investment,
which are inherently dynamic in nature. Consequently, conventional static
models over-state the benefits of crop insurance and cannot adequately in-
form us on optimal uses of crop insurance and how its benefits might depend
on a producer’s net worth, liquidity, and access to and cost of credit.

In this paper, we systematically explore how access to credit and savings
impacts the benefits and optimal uses of agricultural crop insurance. Our
analysis is grounded in formal theoretical models of dynamically optimizing
agents that have access not only to crop insurance, but also to financial in-
struments that allow the agent to build financial reserves through savings.
We begin by exploring the interrelations between saving and insurance using
a two-period model for which analytic solutions exist. In the context of this
model, we establish that the demand for and benefits of crop insurance rely
heavily on a producer’s financial reserves and his/her access to credit and
savings. In particular, savings and insurance are substitutes, with the de-
mand for insurance declining with interest rates on savings, and the demand
for net savings increasing with insurance premium rates. Our analysis also
reveals that the demand for insurance is more a function of the producer’s
financial reserves than the risk aversion embodied in his/her utility of con-
sumption function, and leads us to conclude that insurance is something the
poor cannot afford and the rich do not need. None of these results emerge
from the standard static model of decision-making under uncertainty that is
used almost exclusively in published theoretical and empirical work on crop
insurance demand.

We then turn to an infinite-horizon model of crop insurance demand when
producers are able to save. This model, due to its inherent complexity, cannot
be solved analytically, but may be solved and analyzed using computational
techniques. In the context of a fully dynamic model, the demand for crop
insurance will depend primarily on the curvature of the producer’s value func-
tion, not simply the curvature of his/her utility of consumption function. The
curvature of the value function, moreover, is endogenous to the model, being
determined not only by the agent’s utility of consumption but also access
to savings as indicated by the interest rates at which he/she can save. The
model yields additional implications that do not emerge from conventional
static expected utility models or a two-period dynamic model. In particular,
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in a fully dynamic setting, a producer’s value function in the presence of bor-
rowing and saving exhibits less curvature, and thus embodies less effective
risk aversion, than the producer’s utility of consumption function. As such,
the short- and long-run demand for crop insurance with access to savings
is less than predicted by the two-period model. The curvature of the value
function, moreover, can be reversed at low levels of wealth if bankruptcy and
loan restructuring options exist, turning the producer into what in the con-
text of static expected utility would be considered a ”risk-lover” who would
have no demand for crop insurance.

Our research answers questions of fundamental interest to researcher, prac-
titioners, agricultural economists and policymakers interested in agricultural
risk management not only in the developed countries, but also in the devel-
oping world. Our insights can help us explain the observed low demand for
crop insurance in developed countries and shed light on the proper role for
agricultural insurance in agricultural risk management. Our findings also in-
form the emerging debate among development economists on whether poor
farmers in developing countries are better served by public programs that
promote access to savings or by programs that promote access to crop or
weather insurance.

Literature Review

Although the potential tradeoffs between savings and insurance have not
received much attention from agricultural economists, the topic has been ex-
amined and documented in the general theoretical economics and insurance
literatures. Ehrlich and Becker 1972 were first to develop a theory of decision
making under uncertainty that allows for interaction between self-insurance,
of which savings is one example, and market insurance, concluding that the
two are substitutes. In their words: “optimal decisions about market insur-
ance depend on the availability of ... other activities and should be viewed
within the context of a more comprehensive insurance decision.” The fur-
ther point out that: “apparent attitudes toward risk are dependent on market
opportunities, and real attitudes cannot easily be inferred from behavior.”
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Deaton 1991 analyzes optimal intertemporal consumption behavior of con-
sumers who are able to borrow and save. He finds that when incomes exhibit
low orders of autocorrelation over time, consumes are able to significantly
smooth consumption over time by accumulating modest buffer stock of as-
sets. In his model, however, the option to purchase insurance does not exist.
Paxson 1992 and Morduch 1995 conclude that an individual’s ability to save
and borrow can greatly smooth consumption in the absence of alternative
risk markets. Eisenhauer 1994 considers consumer credit as a source of risk
financing and derives explicit conditions under which it is superior to in-
surance policies. He concludes that credit can be a viable alternative to
insurance for financing low-severity household risks.

Gollier 1994 examines dynamic risk management strategies and concludes
that risk-averse individuals will prefer self-insurance in the long run if the cost
of insurance exceeds a certain critical value, suggesting that market insurance
is most useful as a transitory strategy to protect capital and savings early in
the life cycle. Gollier 2002 develops a theoretical foundation to self-insurance
through intertemporal diversification. He finds that in a dynamic setting,
attitudes toward wealth risk and consumption risk are not the same, and
self-insurance becomes an effective substitute to costly external insurance.

Most recently, Gollier 2003 analyzes a simple life-cycle model based on Deaton
1991, Heaton and Lucas 1996, and Carroll 1997, in which consumers can fol-
low a time-diversification (self-insurance) strategy by accumulating buffer
stock wealth. He concludes that insurance would only be demanded for
catastrophic risks or by individual that face liquidity constraints, and thus
the added value of the insurance sector would be surprisingly low in such an
economy.

Absorption of production and price shocks through some form of self-insurance
is especially common in developing countries. Deaton 1992 analyzes how
farmers in developing countries protect their living standards against fluc-
tuations in income, emphasizing the role of credit markets in consumption
smoothing. Hubbard, Skinner, and Zeldes 1995 employ a dynamic model
with multiple sources of uncertainty to demonstrate how social insurance
programs can discourage self-insurance and precautionary savings among
poor households. Dercon 2002 provides a comprehensive review of recent
literature on risk-management and risk-coping strategies of poor households,
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identifies constraints on their effectiveness, and discusses policy options. He
shows that the opportunities to use assets as insurance are limited by risk,
lumpiness of assets, and entry constraints, and that informal risk-sharing
provides only limited protection, leaving some of the poor exposed to very
severe negative shocks.

Kurosaki and Fafchamps 2002 also review a body of research on the typical
mechanisms of consumption smoothing, which include accumulating grain,
livestock, and financial assets as a form of precautionary saving. They further
refer to a body of literature that analyzes efficiency of these institutions and
predicts that full insurance will not achieved despite substantial consumption
smoothing. They also find that the households adapts production practices in
response to consumption price risk and warn that “empirical and theoretical
work on risk should avoid putting an exclusive emphasis on yield and output
price risk”.

Review of Static Model

We begin by briefly reviewing the demand for insurance in the static Von
Neumann-Morgenstern expected utility model, which has been the bulwark
of risk analysis in agriculture and other fields of economics.

Consider an agent endowed with predetermined initial wealth w > 0 who
faces an uncertain income ỹ ≥ 0 and, additionally, an uncertain, but insurable
loss l̃ ≥ 0 that is independent of income, with El̃ > 0. The agent may insure
any portion x ∈ [0, 1] of the loss at a premium rate π > 0.2 That is, if the
agent pays a premium xπ, he receives an indemnity xl̃ if he experiences a
loss of magnitude l̃. The agent chooses the coverage x that maximizes his
expected utility of terminal wealth; that is, he solves:

max
0≤x≤1

U(x)

where

U(x) ≡ Eu(w + ỹ − (1− x)l̃ − πx).

2In order to preclude the possibility of nonpositive terminal wealth, we further assume
that w+y > l̄, where y ≡ sup{y|Pr(ỹ ≤ y) = 0} is the greatest lower bound on attainable

income and l̄ ≡ inf{l|Pr(l̃ ≥ 0) = 1} is the least upper bound on attainable losses.
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Here, u is the agent’s utility of wealth, which is presumed to be twice contin-
uously differentiable, strictly increasing, and strictly concave. Under these
assumptions, U is twice continuously differentiable, strictly increasing, and
strictly concave, implying that the optimal coverage x is well-defined and
completely characterized by the Karush-Kuhn-Tucker conditions:

0 ≤ x ≤ 1, x > 0 =⇒ U ′(x) ≥ 0, x < 1 =⇒ U ′(x) ≤ 0.

Theorem 1. The agent purchases coverage if, and only if,

π < π∗ ≡ Eλ(l̃)l̃.

where

λ(l) ≡ Eu′(w + ỹ − l)
Eu′(w + ỹ − l̃)

.

Moreover,

π∗ > El̃.

Proof. The Karush-Kuhn-Tucker conditions assure that the agent purchases
coverage if, and only if,

U ′(0) = E(l̃ − π)u′(w + ỹ − l̃) > 0.

The first part of the proposition follows directly with some simple algebraic
manipulations. The second part of the proposition follows from the “covari-
ance rule” (Gollier 2001, p. 94) and the facts that λ is strictly increasing, l̃
is non-degenerate, and Eλ(l̃) = 1.

Theorem 1 states that agent purchases coverage if, and only if, the premium
rate π is less than the “risk adjusted” expected loss π∗, defined as the expec-
tation of the loss l̃ weighted by the relative marginal utility of wealth λ(l̃).
The risk-adjusted expected loss π∗ exceeds the expected loss El̃ because the
marginal utility of wealth is greater for large losses than for small losses.
This implies that the agent will purchase coverage even if the premium rate
exceeds the expected indemnity, provided the premium rate is not excessively
high.
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Theorem 2. The agent will fully insure, that is, x = 1, if, and only if, the
expected loss El̃ equals or exceeds the premium rate π.

Proof. Since ỹ and l̃ are independent,

U ′(1) = E(l̃ − π)u′(w + ỹ − π) = (El̃ − π)Eu′(w + ỹ − π).

Given that U ′ is strictly decreasing, the Karush-Kuhn-Tucker conditions
guarantee that x ≥ 1 ⇐⇒ U ′(1) ≥ 0 ⇐⇒ El̃ ≥ π.

Theorem 3. For El̃ < π < π∗, the optimal coverage x is a continuously
differentiable function of the premium rate π.

Proof. If El̃ < π < π∗, the agent will purchase coverage x > 0 such that
U ′(x) = 0. Thus, the Implicit Function Theorem guarantees that the optimal
coverage x(π) is a continuously differentiable function of the premium rate
with derivative

x′(π) =
xE(l̃ − π)u′′(w + ỹ − (1− x)l̃ − πx) + Eu′(w + ỹ − (1− x)l̃ − πx)

E(l̃ − π)2u′′(w + ỹ − (1− x)l̃ − πx)
.

It is not possible to sign this derivative globally without further assumptions.

Note 1. At this point, I have not been able to sign this derivative globally. I
should review Gollier for possible insights into how to do this

Theorem 4. Let V (w) denote the maximum expected utility for a given
wealth w, that is,

V (w) = max
0≤x≤1

U(x,w)

where

U(x,w) ≡ Eu(w + ỹ − (1− x)l̃ − πx).

Then V is continuously differentiable, strictly increasing, and strictly con-
cave.
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Proof. The continuous differentiability and the strict monotonicity of V fol-
low directly from the Envelope Theorem, which guarantees that

V ′(w) =
∂U(x,w)

∂w
= Eu′(w + ỹ − (1− x)l̃ − πx) > 0,

where x is the optimal coverage given wealth w. To establish strict concavity,
let w1 and w2 be distinct levels of wealth and let α1 and α2 be strict convex
weights; furthermore, let xi be the optimal coverage for wealth wi. Then

V (α1w1 + α2w2) ≥ U(α1x1 + α2x2, α1w1 + α2w2)

= Eu(
∑

i αi(wi + ỹ − (1− xi)l̃ − πxi)
≥ E

∑
i αiu(wi + ỹ − (1− xi)l̃ − πxi)

=
∑

i αiEu(wi + ỹ − (1− xi)l̃ − πxi)
=
∑

i αiV (wi)

Since u is strictly concave, the second inequality will be an exact equality
only if

w1 + ỹ − (1− x1)l̃ − πx1 = w2 + ỹ − (1− x2)l̃ − πx2

with probability 1, or, equivalently, only if

(w1 − w2) + (l̃ − π)(x1 − x2) = 0

with probability 1. However, since l̃ is not constant with probability 1, this
is possible only if x1 = x2 and w1 = w2, violating the assumption that w1

and w2 are distinct.

Basic Two-Period Model without Savings

Let us now extend the basic static Von Neumann-Morgenstern expected util-
ity model to two periods, allowing the agent to purchase insurance in the first
period, period 0, to cover potential losses in the following period, period 1.
We assume the agent has no means to save, a possibility that is examined in
the subsequent subsection.

Consider an agent endowed with predetermined wealth w faces an uncertain
income ỹ next period and, additionally, an uncertain, but insurable loss l̃ ≥ 0
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that is independent of income, with El̃ > 0.3 The agent is not permitted
to borrow or save, but may insure any portion x ∈ [0, 1] of the loss at a
premium rate π > 0. That is, if the agent pays a premium xπ this period,
he receives an indemnity xl̃ next period if he experiences a loss of magnitude
l̃. The agent chooses the coverage x that maximizes the sum of current and
discounted expected future utility of consumption; that is, he solves:

max
0≤x≤1

U(x)

where

U(x) ≡ u0(w − πx) + δEu1(ỹ − (1− x)l̃).

Here, δ < 1 is the agent’s subjective discount factor and u0 and u1 are
the agent’s current and future utility of consumption, both of which are as-
sumed to be twice continuously differentiable, strictly increasing, and strictly
concave. Under these assumptions, U is twice continuously differentiable,
strictly increasing, and strictly concave, implying that the optimal coverage
x is well-defined and completely characterized by the Karush-Kuhn-Tucker
conditions:

0 ≤ x ≤ 1, x > 0 =⇒ U ′(x) ≥ 0, x < 1 =⇒ U ′(x) ≤ 0.

Theorem 5. The agent purchases coverage if, and only if,

π < π∗ ≡ Eλ(l̃)l̃.

where

λ(l) ≡ δ
Eu′1(ỹ − l)
u′0(w)

.

Proof. The Karush-Kuhn-Tucker conditions imply that the agent purchases
coverage if, and only if,

U ′(0) = −πu′0(w − πx) + δEl̃u′1(ỹ − (1− x)l̃) > 0.

The proposition follows immediately, given some algebraic rearrangement of
terms.

3In order to preclude the possibility of nonpositive wealth in the second period, we
further assume that y > l̄, where y ≡ sup{y|Pr(ỹ ≤ y) = 0} is the greatest lower bound

on attainable income and l̄ ≡ inf{l|Pr(l̃ ≥ 0) = 1} is the least upper bound on attainable
losses.
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Theorem 5 states that agent purchases coverage if, and only if, the premium
rate π is less than the “risk adjusted” expected loss π∗, defined as the expecta-
tion of the loss l̃ weighted by the marginal rate of intertemporal substitution
of consumption λ(l̃). The risk adjusted expected loss π∗ may be greater than
or less than the expected loss El̃, depending on the curvatures of the utility
functions and the agent’s wealth w. A sufficiently rich agent (high w) will
purchase insurance, even if it is actuarially unfavorable, that is, even if the
premium exceeds the expected indemnity. Similarly, a sufficiently poor agent
(low w), will not purchase insurance, even if it is actuarially favorable, that
is, even if the expected indemnity exceeds the premium.

Theorem 6. The agent will fully insure, that is, x = 1, if, and only if,

π ≤ πfull

where πfull is uniquely characterized by the nonlinear equation

πfull ≡ δE
u′1(ỹ)

u′0(w − πfull)
l̃.

Moreover, 0 < πfull < π∗.

Proof. To prove that πfull is well-defined, let

f(π) ≡ π − δEu
′
1(ỹ − l̃)l̃

u′0(w − π)
.

Now, f is continuous, f ′(π) > 0, f(0) < 0, and limπ→w f(π) = ∞, implying
that f has a unique positive root on the interval (0, w), which by definition
equals πfull. Given that U ′ is strictly decreasing, the Karush-Kuhn-Tucker
conditions guarantee that x ≥ 1 if, and only if,

U ′(1) = −πu′0(w − π) + δEl̃u′1(ỹ − l̃) ≥ 0

or, equivalently, if, and only if,

f(π) ≤ 0 = f(πfull),

or, equivalently, if, and only if,

π ≤ πfull.
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Also,

πfull = E
u′1(ỹ)

u′0(w − πfull)
l̃ < E

u′1(ỹ − l̃)
u′0(w)

l̃ = π∗

since u′1(ỹ − l̃) ≥ u′1(ỹ) > 0 and 0 < u′0(w) < u′0(w − πfull)

Theorem 6, in conjunction with Theorem 5, states that an agent will fully
insure if π ≤ πfull, will partially insure if πfull < π < π∗, and will not insure
if π∗ ≤ π. If πfull < π < π∗, the agent will purchase coverage x > 0 that
satisfies

πu′0(w − πx) = δEl̃u′1(ỹ − (1− x)l̃).

That is, at optimum coverage, the value of consumption forgone by purchas-
ing a marginal unit of coverage today equals the expected present value of
consumption provided by the additional indemnity tomorrow.

Theorem 7. For πfull < π < π∗, the optimal coverage x is a continuously
differentiable strictly decreasing function of the premium rate π and a con-
tinuously differentiable strictly increasing function of wealth w.

Proof. For πfull < π < π∗, the optimal coverage x is characterized by the
nonlinear equation U ′(x) = 0. The Implicit Function Theorem guarantees
that over this range, the optimal coverage is a continuously differentiable
function of the premium rate π and wealth w, with partial derivatives

∂x

∂π
=

u′0(w − πx)− xπu′′0(w − πx)

π2u′′0(w − πx) + δEl̃2u′′1(ỹ − (1− x)l̃)
< 0

and

∂x

∂w
=

πu′′0(w − πx)

π2u′′0(w − πx) + δEl̃2u′′1(ỹ − (1− x)l̃)
> 0.

Theorem 8. Let V (w) denote the maximum sum of current and discounted
expected future utility for a given wealth w, that is,

V (w) = max
0≤x≤1

U(x,w)
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where

U(x,w) ≡ u0(w − πx) + δEu1(ỹ − (1− x)l̃).

Then V is continuously differentiable, strictly increasing, and strictly con-
cave.

Proof. The continuous differentiability and the strict monotonicity of V fol-
low directly from the Envelope Theorem, which guarantees that

V ′(w) =
∂U(x,w)

∂w
= u′0(w − πx) > 0,

where x is the optimal coverage given wealth w. To prove strict concavity,
begin by noting that U is jointly strictly concave in (x,w). Suppose xi is
the optimal coverage for wealth wi for i = 1, 2, where w1 6= w2; let w =
α1w1 +α2w2 and x = α1x1 +α2x2 where α1 and α2 are strict convex weights.
Then,

V (w) ≥ U(x,w) > α1U(x1, w1) + α2U(x2, w2) = α1V (w1) + α2V (w2).

Suppose now that loss is of the following simple form: l̃ = L > 0 with
probability p, and equals zero otherwise. The following theorem tells us how
the optimal coverage x varies with the magnitude of the loss L, holding both
the premium rate π and the expected loss pL = K constant:

Theorem 9. If πfull < π < π∗, then an agent will cover a greater portion of
an infrequent catastrophic loss (low p, high L) than a more frequent smaller
loss (higher p, lower L) with the same expectation pL and insurable at the
same premium rate π.

Proof. If πfull < π < π∗, then the agent will purchase coverage x < 1 charac-
terized by U ′(x) = 0. Applying the Implicit Function Theorem allows us to
conclude that

∂x

∂L
=

(1− x)δpLu′′1(ỹ − (1− x)L)

π2u′′0(w − πx) + δpL2u′′1(ỹ − (1− x)L)
> 0.
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Two-Period Model with Savings

We now extend the two-period model examined in the preceding section to
allow for liquid savings.

Consider an agent endowed with predetermined wealth w faces an uncertain
income ỹ ≥ 0 next period and, additionally, an uncertain, but insurable loss
l̃ ≥ 0 that is independent of income, with El̃ > 0.4 The agent may save as
much of his wealth s ≥ 0 as he pleases, earning an interest rate r > 0. He
may also insure any portion x ≥ 0 of the uncertain loss at a premium rate
π > 0. That is, if the agent pays a premium xπ this period, he receives an
indemnity xl̃ next period if he experiences a loss of magnitude l̃. The agent
chooses the savings s and coverage x that maximize the sum of current and
discounted expected future utility of consumption; that is, he solves:

max
s≥0,x≥0

U(s, x)

where

U(s, x) ≡ u0(w − s− πx) + δEu1(ỹ + (1 + r)s− (1− x)l̃).

Here, δ ≡ (1 + ρ)−1 where ρ > 0 is the agent’s subjective discount rate and
u0 and u1 are the agent’s current and future utility of consumption, both of
which are assumed to be twice continuously differentiable, strictly increasing,
and strictly concave.

Let

rs ≡ Eλ̃(1 + r)− 1

and

rx ≡ Eλ̃
l̃

π
− 1

4In order to preclude the possibility of nonpositive wealth in the second period, we
further assume that y > l̄, where y ≡ sup{y|Pr(ỹ ≤ y) = 0} is the greatest lower bound

on attainable income and l̄ ≡ inf{l|Pr(l̃ ≥ 0) = 1} is the least upper bound on attainable
losses.
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denote, respectively, the expected rates of return on savings and insurance
coverage, weighted by the realized marginal rate of intertemporal substitution
of consumption

λ̃ ≡ u′1(ỹ + (1 + r)s− (1− x)l̃)

u′0(w − s− πx)
.

We refer to rs and rx, respectively, as the “risk-adjusted real rates of return”
on savings and insurance. Forgoing a marginal unit of consumption today in
order to save is expected to yield tomorrow the current equivalent of 1 + rs
units of consumption; forgoing a marginal unit of consumption today in order
to purchase additional insurance coverage is expected to yield tomorrow the
current equivalent of 1 + rx units of consumption tomorrow.

Theorem 10. The optimal levels of savings s and coverage x satisfy the
following conditions:

rs ≤ ρ, s ≥ 0, and rs < ρ =⇒ s = 0

and

rx ≤ ρ, x ≥ 0, and rx < ρ =⇒ x = 0

Proof. The conclusion is an immediate consequence of the Karush-Kuhn-
Tucker Theorem and some algebraic manipulation of the terms.

Theorem 10 states that, at an optimum, the risk-adjusted real rates of return
on savings and insurance must not exceed the discount rate, for otherwise
there would be incentive to save more or purchase more coverage. The agent
will not save or purchase insurance coverage if the associated risk-adjusted
real rate of return is less than the discount rate. If the agent saves and
purchases insurance coverage simultaneously, then the risk-adjusted real rates
of return on saving and insurance coverage are equal to the discount rate,
and thus to each other.

Let

r∗ ≡ u′0(w)

δEu′1(ỹ − l̃)
− 1,
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and

π∗ ≡ δ
Eu′1(ỹ − l̃)l̃
u′0(w)

.

Theorem 11. Suppose r ≤ r∗. Then the agent will not save, and will insure
if, and only if, π < π∗.

Proof. Let s and x be the optimal savings and coverage, given r < r∗ and
π ≥ 0. If s > 0,

∂U

∂s
= −u′0(w − s− πx) + (1 + r)δEu′1(ỹ + (1 + r)s− (1− x)l̃)

< −u′0(w) + (1 + r)δEu′1(ỹ − l̃)

≤ −u′0(w) + (1 + r∗)δEu′1(ỹ − l̃)

= 0

in violation of the K-K-T conditions. This implies s = 0 by contradiction.
Given s = 0, then for x = 0

∂U

∂x
= −πu′0(w) + δEu′1(ỹ − l̃)l̃ = (π∗ − π)u′0(w)

which implies that

∂U

∂x


> 0 if π < π∗

= 0 if π = π∗

< 0 if π > π∗.

Thus, the agent will insure if, and only if, π < π∗.

Theorem 12. Suppose π ≥ π∗. Then the agent will not insure, and will
save if, and only if, r > r∗.

Proof. Let s and x be the optimal savings and coverage, given π ≥ π∗ and
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r. If x > 0,

∂U

∂x
= −πu′0(w − s− πx) + δEu′1(ỹ + (1 + r)s− (1− x)l̃)l̃

< −πu′0(w) + (1 + r)δEu′1(ỹ − l̃)l̃

≤ −π∗u′0(w) + (1 + r)δEu′1(ỹ − l̃)l̃

= 0

in violation of the K-K-T conditions. This implies x = 0 by contradiction.
Given x = 0, then for s = 0

∂U

∂s
= −u′0(w) + (1 + r)δEu′1(ỹ − l̃)

which implies that

∂U

∂s


> 0 if r > r∗

= 0 if r = r∗

< 0 if r < r∗.

Thus, the agent will save a positive amount if, and only if, r > r∗.

Theorem 13. The critical interest rate r∗ below which an agent will not save
is a strictly decreasing function of wealth w; the critical premium π∗ above
which an agent will not insure is a strictly increasing function of wealth w.

Proof. Differentiating expressions above

∂r∗

∂w
=

u′′0(w)

δEu′1(ỹ − l̃)
< 0.

and

∂π∗

∂w
= −δu

′′
0(w)Eu′1(ỹ − l̃)l̃

(u′0(w))2
> 0.
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Thus, given fixed interest rate r and premium rate π, the wealthier the agent,
the more likely he is to save and insure.

Theorem 14. If r > r∗, then there exists π∗1 and π∗2, where 0 < π∗1 < π∗2 <
π∗, such that

• The agent insures, but does not save if π ≤ π∗1.

• The agent saves, but does not insure if π ≥ π∗2.

• The agent both saves and insures if π∗1 < π < π∗2.

Proof. The critical premium level π∗1 is characterized jointly with the optimal
coverage x∗ at that premium by the pair of nonlinear equations

u′0(w − π∗1x∗) = (1 + r)δEu′1(ỹ − (1− x∗)l̃)

π∗1u
′
0(w − π∗1x∗) = δEu′1(ỹ − (1− x∗)l̃)l̃.

The critical premium level π∗2 is characterized jointly with the optimal savings
s∗ at that and higher premiums by the pair of nonlinear equations

u′0(w − s∗) = (1 + r)δEu′1(ỹ + (1 + r)s∗ − l̃)

π∗2u
′
0(w − s∗) = δEu′1(ỹ + (1 + r)s∗ − l̃)l̃.

Figure 1 illustrates how optimal savings and insurance choices divide the
r − π plane into four distinct sections. For low interest rates, below r∗, and
high premium rates, above π∗, it optimal to neither save nor insure. In the
northeast section, where interest and premium rates are relatively high, it is
optimal to save, but not to insure. In the southwest section, where interest
and premium rates are relatively low, it is optimal to insure, but not to
save. It is optimal to both save and insure only for interest-premium rate
combinations that lie between π∗1 and π∗2.

Figure 2 illustrates the demand for savings with access to insurance (blue)
and without access to insurance (red). The demand for savings is not affected
by access to insurance for low interest rates, r ≤ r∗, because these interest
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Figure 2: Demand for Savings, Fixed Premium Rate
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rates are too low to merit savings, regardless of whether insurance is available.
The demand for savings is not affected by access to insurance for high interest
rates, r > r∗2, because at high interest rates it is more beneficial to save than
to insure, and the agent will not insure. For intermediate interest rates,
r∗ < r < r∗2, insurance “crowds out” savings, reducing it below what it
would be without insurance.

Theorem 15. If π < π∗, then there exists r∗1 and r∗2, where r∗ < r∗1 < r∗2,
such that

• The agent insures, but does not save if r ≤ r∗1.

• The agent saves, but does not insure if r ≥ r∗2.

• The agent both saves and insures if r∗1 < r < r∗2.

Proof. The critical interest rate r∗1 is characterized jointly with the optimal
coverage x∗ at that and lower interests rate by the pair of nonlinear equations

u′0(w − πx∗) = (1 + r∗1)δEu
′
1(ỹ − (1− x∗)l̃)

πu′0(w − πx∗) = δEu′1(ỹ − (1− x∗)l̃)l̃.
The critical interest rate r∗2 is characterized jointly with the optimal savings
s∗ at that interest rate by the pair of nonlinear equations

u′0(w − s∗) = (1 + r∗2)δEu
′
1(ỹ + (1 + r∗2)s

∗ − l̃)

πu′0(w − s∗) = δEu′1(ỹ + (1 + r∗2)s
∗ − l̃)l̃.

Figure 3 illustrates how optimal savings and insurance choices divide the
π − r plane into four distinct sections. For low interest rates below r∗ and
high premium rates above π∗, it optimal to neither save nor insure. In the
northeast section, where interest and premium rates are relatively high, it is
optimal to save, but not to insure. In the southwest section, where interest
and premium rates are relatively low, it is optimal to insure, but not to
save. It is optimal to both save and insure only for premium-interest rate
combinations that lie between the r∗1 and r∗2 curves.
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Figure 4 illustrates the demand for insurance with access to savings (blue)
and without access to savings (red). The demand for insurance is not affected
by access to savings for high premium rates, π ≥ π∗, because these premium
rates are too high to merit purchasing coverage, regardless of whether one
has access to savings. The demand for insurance is not affected by access to
savings for low premium rates, π < π∗1, because at low premium rates rates it
is more beneficial to insure than to save, and no savings is undertaken. For
intermediate premium rates, π∗1 < π < π∗, savings“crowds out” insurance,
reducing it below what it would be without access to savings.

Theorem 16. Let V (w) denote the maximum sum of current and discounted
expected future utility for a given wealth w, that is,

V (w) = max
s≥0,x≥0

U(s, x, w)

where

U(s, x, w) ≡ u0(w − s− πx) + δEu1(ỹ + (1 + r)s− (1− x)l̃).

Then V is continuously differentiable, strictly increasing, and strictly con-
cave.
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Proof. The continuous differentiability and the strict monotonicity of V fol-
low directly from the Envelope Theorem, which guarantees that

V ′(w) =
∂U(s, x, w)

∂w
= u′0(w − s− πx) > 0,

where s and x are, respectively, the optimal savings and coverage given wealth
w. To prove strict concavity, begin by noting that U is jointly strictly concave
in (s, x, w). Suppose si and xi are, respectively, the optimal savings and
coverage for wealth wi for i = 1, 2, where w1 6= w2; further suppose that
w = α1w1 + α2w2, s = α1s1 + α2s2, and x = α1x1 + α2x2 where α1 and α2

are strict convex weights. Then,

V (w) ≥ U(s, x, w) > α1U(s1, x1, w1)+α2U(s2, x2, w2) = α1V (w1)+α2V (w2).
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Two-Period Model with Saving - Wealth Effects

For this analysis, we assume that the interest rate r > 0 and the premium
rate π > 0 are both given and examine how savings and insurance decisions
vary with wealth.

Let w∗r and w∗π be implicitly defined by

r ≡ u′0(w
∗
r)

δEu′1(ỹ − l̃)
− 1,

and

π ≡ δ
Eu′1(ỹ − l̃)l̃
u′0(w

∗
π)

.

Equivalently, let

w∗r ≡ u
′−1
0

(
(1 + r)δEu′1(ỹ − l̃)

)
,

and

w∗π ≡ u
′−1
0

(
δ
Eu′1(ỹ − l̃)l̃

π

)
.

Clearly, due to the curvature properties assumed for the utility function
u, both are well defined, provided we assume that limw→0 u

′
0(w) = ∞ and

limw→∞ u
′
0(w) = 0, which we will assume. Moreover:

Theorem 17. Suppose w ≤ w∗r . Then the agent will not save, and will
insure if, and only if, w > w∗π.

Proof. Follows from Theorem 26.

Theorem 18. Suppose w ≤ w∗π. Then the agent will not insure, and will
save if, and only if, w > w∗r .

Proof. Follows from Theorem 27.
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Theorem 19. The critical wealth w∗r below which an agent will not save is a
strictly decreasing function of the interest rate r; the critical wealth w∗π below
which an agent will not insure is a strictly increasing function of the premium
rate π.

Proof. Follows from Theorem 28.

Let

π̄ ≡ 1

1 + r

Eu′1(ỹ − l̃)l̃
Eu′1(ỹ − l̃)

denote the premium rate at which the agent will be indifferent to purchasing
insurance in the absence of savings. Then we have two theorems:

Theorem 20.

π


>
=
<

 π̄ ⇐⇒ w∗π


>
=
<

w∗r

Proof. Follows from Theorem 28.

Theorem 21. Optimal coverage is a strictly increasing function of wealth
over the interval in which the agent insures but does not save.

Proof. Over the stated interval,

−πu′0(w − πx) + δEu′1(ỹ − (1− x)l̃)l̃ = 0.

Differentiating latter expression and rearranging:

x′(w) =
πu′′0(w − πx)

δEu′′1(ỹ − (1− x)l̃)l̃2 + π2u′′0(w − πx)
> 0

Further theoretical results of interest are possible only if we place additional
restrictions on the model. The critical assumption needed to derive these
results appears to be the following:
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Assumption 1. Regularity Assumption: For γ ≥ 0,

π̄(γ) ≡ 1

1 + r

Eu′1(ỹ + γ − l̃)l̃
Eu′1(ỹ + γ − l̃)

is a non-increasing function of γ.

The Regularity assumption states that the maximum premium rate the agent
is willing to pay for insurance will not increase if income experiences a spread-
preserving increase in its mean. More basic assumptions that guarantee
Regularity are not easy to come by.

Theorem 22. Suppose the Regularity Assumption holds. Then, if, π > π̄,
the agent does not insure at any level of wealth.

Proof. To prove the contrapositive, suppose the agent insures for some level
of wealth. Then there is a w ≥ w∗π, such that s ≥ 0 and x = 0 are optimal
for w and

−u′0(w − s) + δ(1 + r)Eu′1(ỹ + (1 + r)s− l̃) ≤ 0

−πu′0(w − s) + δEu′1(ỹ + (1 + r)s− l̃)l̃ = 0,

so that

π̄ ≥ π̄((1 + r)s) =
1

1 + r

Eu′1(ỹ + (1 + r)s− l̃)l̃
Eu′1(ỹ + (1 + r)s− l̃)

≥ π.

Theorem 23. Assume that

• the agent’s period 1 utility function u1 exhibits non-increasing absolute
risk aversion

A(w) ≡ −u
′′
1(w)

u′1(w)

at all levels of wealth w > 0;
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• the loss l̃ is binary, equaling L > 0 with probability p and 0 with prob-
ability 1− p;

• income ỹ is deterministic, and equals y with probability 1.

Then the Regularity Assumption holds.

Proof. Note that, under the given assumptions,

dπ̄

dγ
=
p(1− p)

1 + r

u′1(y + γ)u′1(y + γ − L)

Eu′1(ỹ + γ − l̃)
(A(y + γ)− A(y + γ − L)) ≤ 0.

Note 2. Recall that constant absolute risk aversion and constant relative
risk aversion utility functions satisfy the DARA assumption of the preceding
theorem.

What can we say about the proportion of wealth invested in insurance,
πx(w)/w? The derivative of this proportion has the same sign as

wx′(w)− x(w),

which is positive if and only if

π2u′′0(w − πx)

δEu′′1(ỹ − (1− x)l̃)l̃2 + π2u′′0(w − πx)
> x(w)/w.

However, this is hard to to sign.

What can we say about the the signs of x′(w) and s′(w) when s > 0 and
x > 0?

Here,

0 = −u′0(w − s− πx) + δ(1 + r)Eu′1(ỹ + (1 + r)s− (1− x)l̃).

0 = −πu′0(w − s− πx) + δEu′1(ỹ + (1 + r)s− (1− x)l̃)l̃.
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Figure 5: Demand for Savings and Insurance as a Function of Wealth

Totally differentiating

0 = 1 + (R2Eb(l̃)− 1)s′ + (REb(l̃)l̃ − π)x′.

0 = 1 + (REb(l̃)
l̃

π
− 1)s′ + (Eb(l̃)

l̃2

π
− π)x′.

where

b(l̃) = −δu
′′
1(ỹ + (1 + r)s− (1− x)l̃)

u′′0(w − s− πx)
< 0

But this is nearly impossible to sign.

Basic Results

∂U

∂s
= −u′0(w − s− πx) + δ(1 + r)Eu′1(ỹ + (1 + r)s− (1− x)l̃).

∂U

∂x
= −πu′0(w − s− πx) + δEu′1(ỹ + (1 + r)s− (1− x)l̃)l̃.

27



0 0.5 1 1.5 2 2.5
−1

−0.5

0

0.5

1

1.5

2

2.5

3
Critical Interest Rate

Wealth

rs
ta

r

Figure 6: Critical Interest Rate

0 0.5 1 1.5 2 2.5
0

2

4

6

8

10

12
Critical Premium Rate

Wealth

pi
st

ar

Figure 7: Critical Premium Rate

28



FIRST CRITICAL POINT

0 = −πu′0(w) + δEu′1(ỹ − l̃)l̃.

provided

−u′0(w) + δ(1 + r)Eu′1(ỹ − l̃) ≤ 0

which would imply

π(1 + r)Eu′1(ỹ − l̃) ≤ Eu′1(ỹ − l̃)l̃

SECOND CRITICAL POINT

0 = −πu′0(w − πx) + πδ(1 + r)Eu′1(ỹ − (1− x)l̃).

0 = −πu′0(w − πx) + δEu′1(ỹ − (1− x)l̃)l̃.

THIRD CRITICAL POINT

0 = −u′0(w − s) + δ(1 + r)Eu′1(ỹ + (1 + r)s− l̃).

0 = −πu′0(w − s) + δEu′1(ỹ + (1 + r)s− l̃)l̃.
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so that

π(1 + r)Eu′1(ỹ + (1 + r)s− l̃) = Eu′1(ỹ + (1 + r)s− l̃)l̃.

for current parameterization, let

uL = u′(ỹ + (1 + r)s− L)

and

u0 = u′(ỹ + (1 + r)s)

π(1 + r)[puL + (1− p)u0] = pLuL

==========================

Infinite-Horizon Model with Savings

An infinitely-lived agent begins each period endowed with predetermined
wealth w, which he must then allocate among consumption, savings, and
purchases of insurance. The agent faces an uncertain income ỹ ≥ 0 the
following period and, additionally, an uncertain, but insurable loss l̃ ≥ 0
that is independent of income, with El̃ > 0.5 The agent may save as much
of his wealth s ≥ 0 as he pleases, earning a per-period interest rate r > 0.
He may also insure any portion x ≥ 0 of the uncertain loss the following
period at a premium rate π > 0. That is, if the agent pays a premium xπ

5In order to preclude the possibility of nonpositive wealth in any period, we further
assume that y > l̄, where y ≡ sup{y|Pr(ỹ ≤ y) = 0} is the greatest lower bound on

attainable income and l̄ ≡ inf{l|Pr(l̃ ≥ 0) = 1} is the least upper bound on attainable
losses.

30



this period, he receives an indemnity xl̃ next period if he experiences a loss
of magnitude l̃.

The agent chooses the savings s and coverage x that maximize the sum of
current and discounted expected future utility of consumption over an infinite
horizon. By Bellman’s Principle of Optimality, the agent’s value function,
V (w), which denotes the maximum attainable sum of current and discounted
expected future utility of consumption given the agent’s current wealth w, is
characterized by the functional equation

V (w) = max
s≥0,x≥0

{u(w − s− πx) + δEV (ỹ + (1 + r)s− (1− x)l̃)}.

Here, δ ≡ (1 + ρ)−1 where ρ > 0 is the agent’s subjective discount rate
and u is the agent’s utility of consumption, which is presumed to be twice
continuously differentiable, strictly increasing, and strictly concave. The
agent’s consumption equals his predetermined wealth, plus borrowing, less
production costs, less index insurance premium payments.

Theorem 24. The agent’s Bellman functional equation possesses an unique
solution V , which denotes the maximum sum of current and discounted ex-
pected future utility for a given wealth w. The value function V is continuous,
strictly increasing, and strictly concave.

Proof. Need special arguments. Not sure about differentiability. See Stokey-
Lucas.

We denote by s(w) and x(w) the optimal levels of savings and insurance
coverage, respectively, given wealth w. These are the agent’s optimal policy
functions.

For any admissible level of wealth w, let

rs(w) ≡ Eλ̃(w; ỹ, l̃)(1 + r)− 1

and

rx(w) ≡ Eλ̃(w; ỹ, l̃)
l̃

π
− 1
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denote, respectively, the expected rates of return on savings and insurance
coverage, weighted by the realized marginal rate of intertemporal substitution
of consumption

λ̃(w; ỹ, l̃) ≡ V ′(ỹ + (1 + r)s(w)− (1− x(w))l̃)

u′(w − s(w)− πx(w))
.

We refer to rs(w) and rx(w), respectively, as the “risk-adjusted real rates of
return” on savings and insurance. Forgoing a marginal unit of consumption
today in order to save is expected to yield tomorrow the current equivalent
of 1 + rs units of consumption; forgoing a marginal unit of consumption
today in order to purchase additional insurance coverage is expected to yield
tomorrow the current equivalent of 1 + rx units of consumption tomorrow.

Theorem 25. For any given level of wealth w, the optimal levels of savings
s(w) and coverage x(w) satisfy the following conditions:

rs(w) ≤ ρ, s(w) ≥ 0, and rs(w) < ρ =⇒ s(w) = 0

and

rx(w) ≤ ρ, x(w) ≥ 0, and rx(w) < ρ =⇒ x(w) = 0

Proof. The conclusion is an immediate consequence of the Karush-Kuhn-
Tucker Theorem and some algebraic manipulation of the terms.

Theorem 25 states that, at an optimum, the risk-adjusted real rates of return
on savings and insurance must not exceed the discount rate, for otherwise
there would be incentive to save more or purchase more coverage. The agent
will not save or purchase insurance coverage if the associated risk-adjusted
real rate of return is less than the discount rate. If the agent saves and
purchases insurance coverage simultaneously, then the risk-adjusted real rates
of return on saving and insurance coverage are equal to the discount rate,
and thus to each other.

For any given level of wealth w, let

r∗(w) ≡ u′(w)

δEV ′(ỹ − l̃)
− 1,

32



and

π∗(w) ≡ δ
EV ′(ỹ − l̃)l̃

u′(w)
.

Theorem 26. Suppose r ≤ r∗(w). Then the agent will not save, and will
insure if, and only if, π < π∗(w).

Proof. Let s and x be the optimal savings and coverage, given level of wealth
w, and suppose r < r∗(w). If s > 0,

∂U

∂s
= −u′(w − s− πx) + (1 + r)δEV ′(ỹ + (1 + r)s− (1− x)l̃)

< −u′(w) + (1 + r)δEV ′(ỹ − l̃)

≤ −u′(w) + (1 + r∗)δEV ′(ỹ − l̃)

= 0

in violation of the K-K-T conditions. This implies s = 0 by contradiction.
Given s = 0, then for x = 0

∂U

∂x
= −πu′(w) + δEV ′(ỹ − l̃)l̃ = (π∗ − π)u′(w)

which implies that

∂U

∂x


> 0 if π < π∗

= 0 if π = π∗

< 0 if π > π∗.

Thus, the agent will insure if, and only if, π < π∗.

Theorem 27. Suppose π ≥ π∗(w). Then the agent will not insure, and will
save if, and only if, r > r∗(w).

Proof. Let s and x be the optimal savings and coverage, given π ≥ π∗ and
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r. If x > 0,

∂U

∂x
= −πu′(w − s− πx) + δEV ′(ỹ + (1 + r)s− (1− x)l̃)l̃

< −πu′(w) + (1 + r)δEV ′(ỹ − l̃)l̃

≤ −π∗u′(w) + (1 + r)δEV ′(ỹ − l̃)l̃

= 0

in violation of the K-K-T conditions. This implies x = 0 by contradiction.
Given x = 0, then for s = 0

∂U

∂s
= −u′(w) + (1 + r)δEV ′(ỹ − l̃)

which implies that

∂U

∂s


> 0 if r > r∗

= 0 if r = r∗

< 0 if r < r∗.

Thus, the agent will save a positive amount if, and only if, r > r∗.

Theorem 28. The critical interest rate r∗(w) below which an agent will not
save is a strictly decreasing function of wealth w; the critical premium π∗(w)
above which an agent will not insure is a strictly increasing function of wealth
w.

Proof. Differentiating expressions above

∂r∗(w)

∂w
=

u′′(w)

δEV ′(ỹ − l̃)
< 0.

and

∂π∗(w)

∂w
= −δu

′′(w)EV ′1(ỹ − l̃)l̃
(u′(w))2

> 0.
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Thus, the wealthier the agent, the higher must be the interest rate to induce
him to save and the lower must be the premium rate to induce him to insure.

Let w∗r and w∗π be defined by

w∗r = u
′−1
(

(1 + r)δEV ′(ỹ − l̃)
)
,

and

w∗π ≡ u
′−1

(
δEV ′(ỹ − l̃)l̃

π

)
.

so that r∗(w∗r) = r and π∗(w∗π) = π. Clearly, due to the curvature properties
assumed for the utility function u, both are well defined, provided we as-
sume that limw→0 u

′(w) = ∞ and limw→∞ u
′(w) = 0, which we will assume.

Moreover:

Theorem 29. Suppose w ≤ w∗r . Then the agent will not save, and will
insure if, and only if, w > w∗π.

Proof. Follows from Theorem 26.

Theorem 30. Suppose w ≤ w∗π. Then the agent will not insure, and will
save if, and only if, w > w∗r .

Proof. Follows from Theorem 27.

Theorem 31. The critical wealth w∗r below which an agent will not save is a
strictly decreasing function of the interest rate r; the critical wealth w∗π below
which an agent will not insure is a strictly increasing function of the premium
rate π.

Proof. I am not sure that this is easy to prove, and may actually be false.
See Theorem 28.

Let

π̄ ≡ 1

1 + r

EV ′(ỹ − l̃)l̃
EV ′(ỹ − l̃)
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denote the premium rate at which the agent will be indifferent to purchasing
insurance in the absence of savings. Then we have two theorems:

Theorem 32.

π


>
=
<

 π̄ ⇐⇒ w∗π


>
=
<

w∗r

Proof. Follows from Theorem 28. Double check this.

Theorem 33. Optimal coverage is a strictly increasing function of wealth
over the interval in which the agent insures but does not save.

Proof. Over the stated interval,

−πu′(w − πx) + δEV ′(ỹ − (1− x)l̃)l̃ = 0.

Differentiating latter expression and rearranging:

x′(w) =
πu′′(w − πx)

δEV ′′(ỹ − (1− x)l̃)l̃2 + π2V ′′(w − πx)
> 0

Further theoretical results of interest are possible only if we place additional
restrictions on the model. The critical assumption needed to derive these
results appears to be the following:

Assumption 2. Regularity Assumption: For γ ≥ 0,

π̄(γ) ≡ 1

1 + r

EV ′(ỹ + γ − l̃)l̃
EV ′(ỹ + γ − l̃)

is a non-increasing function of γ.

The Regularity assumption states that the maximum premium rate the agent
is willing to pay for insurance will not increase if income experiences a spread-
preserving increase in its mean. More basic assumptions that guarantee
Regularity are not easy to come by.
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Theorem 34. Suppose the Regularity Assumption holds. Then, if, π > π̄,
the agent does not insure at any level of wealth.

Proof. To prove the contrapositive, suppose the agent insures for some level
of wealth. Then there is a w ≥ w∗π, such that s ≥ 0 and x = 0 are optimal
for w and

−u′(w − s) + δ(1 + r)EV ′(ỹ + (1 + r)s− l̃) ≤ 0

−πu′(w − s) + δEV ′(ỹ + (1 + r)s− l̃)l̃ = 0,

so that

π̄ ≥ π̄((1 + r)s) =
1

1 + r

EV ′(ỹ + (1 + r)s− l̃)l̃
EV ′(ỹ + (1 + r)s− l̃)

≥ π.

Theorem 35. Assume that

• the agent’s value function V exhibits non-increasing absolute risk aver-
sion

A(w) ≡ −V
′′(w)

V ′(w)

at all levels of wealth w > 0;

• the loss l̃ is binary, equaling L > 0 with probability p and 0 with prob-
ability 1− p;

• income ỹ is deterministic, and equals y with probability 1.

Then the Regularity Assumption holds.

Proof. Note that, under the given assumptions,

dπ̄

dγ
=
p(1− p)

1 + r

V ′(y + γ)V ′(y + γ − L)

Eu′1(ỹ + γ − l̃)
(A(y + γ)− A(y + γ − L)) ≤ 0.
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