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Abstract

This paper studies the effects of the carbon-based ecosystem on a country’s output. We
propose and estimate a dynamic game production model in which a country’s ecosystem, as
measured by its reservoir of carbon in land biomass and soils, is a productive input. Non-
monotone land sink absorption of atmospheric carbon is the primary feedback channel from
increased GHG concentrations. In equilibrium, a country’s land carbon policy accounts for its
direct effects on the ecosystem and on diminished land sink as GHG concentrations increase.
We first estimate land sink absorption rates and the output elasticities of land use and the
land carbon ecosystem for 152 countries. Calibrating the model to these estimates, we simulate
the model to 2100 under four standard Representative Concentration Pathway scenarios. In
the simulation, all countries experience higher average annual GDP growth under lower GHG
concentration scenarios. However, the growth differentials between high and low scenarios are
starkest for more developed countries. When compared to a “counterfactual” constant sink
model, the decline of land carbon absorption makes little difference in low concentration sce-
narios, but decreases global GDP growth by around 1.3% per year over the next 80 years in
the highest scenario. Again, the differences are most pronounced in developed countries.
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1 Introduction

The carbon-based ecosystem can be viewed as a type of “capital stock” that enters
directly as a productive input. Comprising the reservoir of un-extracted carbon
contained in land biomass and soils, this ecosystem adds value to a country’s economy
in any number of ways. It preserves soil nutrients, prevents erosion, flooding, and
habitat loss, it acts as a filtration system for human and animal waste, and serves as
a natural climate stabilizer (IPCC, 2014; Mcalpine and Wotton, 2009).

This paper studies the effects of changes in the carbon-based ecosystem on a
country’s output. We propose and estimate a dynamic game model of economic
growth in which fossil fuel consumption, capital-emissions intensity, land carbon
use, and this ecosystem are all inputs in the production technology. The estimated
parameters are then used simulate time paths of land carbon stocks and GDP across
152 countries to the end of the century.

The model features a carbon feedback mechanism whereby increased land use
and greenhouse gases (GHG) concentrations from fossil fuels can deplete a coun-
try’s carbon-based ecosystem. The particular channel through which this occurs is
land sink absorption. Land sink absorption, the ability of land biomass to absorb
carbon from the atmosphere, arises from a subtle combination of plant photosynthe-
sis and respiration and ground absorption of carbon. The process is not negligible.
The world’s stock of carbon biomass, both above and below ground, in 2010 was
approximately 344 GtC (FAO, 2015; Zomer et al., 2016). The land sink flow for
2011 constituted around 0.8% of the 2010 stock, excluding anthropogenic responses
(Le Quere et al., 2018). All else equal, greater absorption capacity can increase
the terrestrial stock and reduce atmospheric GHGs. Thus, a land sink with greater
absorption capacity helps sustain the ecosystem and mitigate the effects of climate
change.

The absorption capacity of sinks, however, depends on the existing concentration
of atmospheric GHGs. A number of studies indicate that increases in atmospheric
GHGs initially increases but eventually decreases the reabsorption rates of carbon
into plant and soils (Hikosaka et al., 2006; Thomson et al., 2008; Fernandez-Martinez
et al., 2017; Raupach et al., 2014; Xu, 2015; Feng et al., 2015; Zheng et al., 2018;
Hubau et al., 2020). At some point, high enough concentrations hinder the capacity
of the terrestrial ecosystem to absorb GHGs from the atmosphere. In the extreme,
sinks can turn negative: respiration and decomposition outweigh absorption and
photosynthesis.1

1Recent droughts and beetle infestation related to droughts have, for instance, resulted in the
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Our study therefore integrates a non-monotone land sink function into a dynamic
game model of land use by each country. Land use encompasses a wide array of ac-
tivities, including agriculture, forestry, freshwater fisheries, and urban development.
Globally, land use affects GHG concentrations and these concentrations, in turn,
alter terrestrial carbon sinks of all countries.

To analyze land use in the dynamic game, we characterize the Markov Perfect
equilibria (MPE) in land use policies. A MPE land use policy is a state-contingent
combination of land use and atmospheric removals (from replanting, reseeding, etc)
for each country that maximizes the discounted dynamic payoff of its representative
consumer after each state, given land use policies of other countries. Externali-
ties arise because countries do not internalize the effects of their decisions on other
countries’ local ecosystems. Nevertheless, preserving the ecosystem is desirable to
some extent because it has direct value as an input and indirect value in smoothing
inter-temporal consumption.

Equilibrium land policies are shown to exist and are characterized in closed form.
In equilibrium, net emissions (emissions minus removals) increase in land carbon
stock and in land sink. They decrease in the output elasticity of the ecosystem and
in the discount factor.

Using data on carbon stocks from the Food and Agriculture Organization of the
United Nations (FAO, 2019) and land sink data from 2018 Global Carbon Project,
we estimate the land sink and production parameters for 152 countries covering the
time period 1990-2015. Calibrating the model to these estimates, we then simulate
time paths of land carbon stocks and GDP to the end of the century.

The estimated coefficients of the sink absorption function are statistically signif-
icant and consistent with an “inverted-U-shaped” relationship between GHG con-
centrations and land sink rates, as indicated by the cited studies. This diminished
capacity of land sink has implications for GDP since land carbon enters production
both directly as an input and indirectly via the country’s land use policy.

The key production parameter is the policy-adjusted output elasticity of land
carbon. It quantifies the effect of a percentage increase in the country’s land carbon
stock on GDP after adjusting for equilibrium land use. The policy-adjusted elasticity
determines the net effects from both anthropogenic and non-anthropogenic changes
in the ecosystem.

The assumption that countries in the sample adopt equilibrium land use policies

forests of six states in the U.S., Arizona, Colorado, Montana, Nevada, Utah, and Wyoming, turning
into sources, rather than sinks, for emissions (Mooney and Murphy, 2019).
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is essential for identifying the policy-adjusted output elasticity. Country data does
not distinguish exogenous land sinks from endogenous behavior. Nor does it distin-
guish between emissions and removals. Exogenous and endogenous sources and sinks
cannot be disentangled. Thus, in the absence of an equilibrium model of land use,
the policy-adjusted elasticity is not identified in the production function.

Using the equilibrium land policy to pin down elasticities, we obtain estimates
for four clusters of countries. Each country cluster is grouped according to the
United Nations Human Development Index (HDI). A country is categorized as either
High, Medium High, Medium Low, or Low development. As a robustness check, we
also obtain estimates for alternative specifications of the model and for alternative
clusterings based geography, emissions, forestry stock, or GDP.

Estimated policy-adjusted elasticities are positive and statistically significant over
the entire sample. They are also positive and significant in the High and Medium
High Development country clusters. The measured effects are sizable. Applied to
the U.S., for instance, the observed increase in U.S. land carbon stock from 2010 to
2015 would, after controlling for changes in other inputs and total factor productivity
(TFP), account for around 350 billion USD. The effects are higher in China, where
the observed increase in its land stock from 2010-25 accounts for roughly 3.8 trillion
USD.

The estimated policy adjusted elasticities for Low and Medium Low development
countries are positive but not statistically different from zero, though the overall
model fit is high. In those countries the relation between the country’s ecosystem
and its GDP is more tenuous over the time period in the data.

We incorporate the model-generated land use policies with estimated production
and land sink parameters to simulate dynamic paths of land stocks, land sink absorp-
tion rates, and GDP for each HDI country cluster from 2020 to the end of the century.
Simulations are run for each of the standard four Representative Concentration Path-
way (RCP) scenarios formulated for the Intergovernmental Panel on Climate Change
Fifth Assessment (IPCC, 2014). Each RCP is based on distinct scenarios for growth
in fossil fuel and energy consumption, population, land emissions, mitigation invest-
ments, and climate policy (van Vuuren et al., 2011). The RCPs are labeled according
to their projected levels radiative forcing (+2.6,+4.5,+6.0, and+8.5W/m2) achieved
at the end of the century, relative to pre-industrial levels. Low GHG concentration
scenarios incorporate assumptions on improvements in mitigation technology and
successful policy coordination. High GHG concentration scenarios assume such im-
provements are minimal.

The resulting forecasts show all countries experiencing higher average annual
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GDP growth under lower concentration scenarios. The lowest GHG concentration
scenario, RCP 2.6, shows current trends in GDP growth continuing for all HDI
clusters. Growth slows under high concentration scenarios. The two highest con-
centration scenarios exhibit a peak-and-decline pattern. In RCP 8.5, the worst case
scenario, global GDP peaks around 2060, and declines thereafter.

GDP losses from high GHG concentrations are proportionately larger for devel-
oped rather than developing countries. It appears that highly specialized economies
exhibit greater fragility (in GDP) to changes in the ecosystem.

A number of studies show that low rather than high development countries are
more vulnerable to climate change and to ecological damage more generally. Althor,
Watson, and Fuller (2016) develop indices relating to a country’s vulnerability to
climate change. Indices of sensitivity to land use are analyzed by Canadell et al.
(2007), Thomson et al. (2008), Ito et al. (2008), Power (2010), Zomer et al. (2016),
FAO (2015), and Narayan et al. (2017).

Our finding here is not necessarily at odds with these studies, since it applies only
to measured GDP. We show, in fact, that developing countries experience greater de-
terioration of land carbon under high concentration of GHGs even as these countries
fare relatively well in measured GDP. In other words, high concentrations scenarios
may make developing countries both more vulnerable and more immune to GDP
losses over the next half century.

We also compare our simulation model under the diminishing/declining land sink
to a counterfactual, constant sink model. In the latter, the absorption rate is held
fixed at its historical average. While there is virtually no difference between the
“active” and the “constant” sink in the lowest RCP simulation, the differences are
sizable and increasing in the larger concentration scenarios. Relative to the constant
sink, the active land sink lowers global GDP by 8% in RCP 4.5, 19% in RCP 6.0,
and 64% in RCP 8.5 by the end of the century. Under RCP 8.5, the diminishing land
sink decreases global GDP growth by around 1.3% per year over the next 80 years in
the highest scenario. The differences are greatest in the medium high development
countries where sensitivity to declines in carbon stock is highest.

In general, apportioning the climate damage from specific channels has proved
difficult. Tol (2009) distinguishes between an “enumerative” and “statistical” ap-
proaches. The enumerative approach evaluates and aggregates estimates from phys-
ical and natural sciences (e.g., estimates of coastal land loss) using market prices.2

2See Tol (2009) and Nordhaus and Moffat (2017) for surveys of empirical studies of climate
damage.
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Statistical studies use cross-sectional variation in output and climate within a coun-
try to estimate effects that are then extrapolated across time.

Integrated assessment models (IAMs) traditionally adopted a statistical approach.
They analyzed large scale effects of GHG emissions on economic outcomes by com-
bining elements of climate science with an economic growth model.3 Recent IAMs
have gravitated toward enumerative approaches, accounting for many of the GHG
altering biogeochemical processes in great detail. Several efforts have been made to
improve the accuracy of the models (Meinshausen, Raper, and Wigley, 2011). How-
ever, the way in which these processes are modeled differ across IAMs (Calel and
Stainforth, 2017), leading to different climate change forecasts and subsequent policy
recommendations.

The present study is a hybrid of various approaches. It exploits variation in land
carbon stocks and output. It also focuses on one specific process and develops a
simplified but tractable method of evaluating its effects in a dynamic equilibrium
choice model. Other potential harms are omitted from the analysis, which suggests
that the losses reported here may be lower bounds on harms not already included in
the RCP scenarios.

The paper is organized as follows. Section 2 develops the model, starting with a
rudimentary model of the carbon cycle together with a dynamic model of equilibrium
carbon policy. This includes a description of country-specific production processes
that incorporate the carbon-based inputs described above. The structural equations
and identification strategy are described in Section 3. Section 4 describes the data
and the estimation results. Section 5 describes the simulation procedure, the use of
RCP projections and land sink absorption estimates, and the results. A summary
discussion in Section 6 concludes the paper. The Appendix contains proofs, further
documentation, and a full description of the algorithms used to estimate and simulate
the model.

2 A Dynamic Model of Carbon Consumption

This section presents a discrete time, infinite horizon dynamic game model of carbon
consumption among n countries. Each country consumes carbon in the form of fossil

3Recent economic studies and integrated assessment models of this type include Dell, Jones, and
Olken (2012); Golosov et al. (2014); Acemoglu et al. (2012); Cai, Judd, and Lontzek (2012); IPCC
(2014); Nordhaus (2014, 2018); Burke, Hsiang, and Miguel (2015); Cai et al. (2015); Hsiang et al.
(2017); Deryugina and Hsiang (2017); Hassler and Krusell (2018), and many others.
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fuels and land use. The model focuses on a specific feedback channels from carbon
emissions to land carbon stocks and land use. The feedback channels determine the
evolution of the terrestrial carbon ecosystem over time.

The model is less detailed than most IAMs. It does not contain a highly detailed
and disaggregated energy sector. Energy pricing and market outcomes are exoge-
nous. Land use, however, is endogenously influenced by rational, forward looking
authorities who are cognizant of the dynamic trade offs between current and future
consumption.

At each decision date t = 0, 1, 2, . . ., a country faces a dynamic trade-off between
the positive effects of carbon consumption and the negative effects on its terrestrial
ecosystem from that consumption. All decisions take place in a rudimentary model
of the carbon cycle. The next subsection lays out the carbon accounting and then
proceeds with the economic model.

2.1 Global Carbon Accounting

In standard methods of carbon accounting, the global stock of carbon is constant.
The carbon cycle shifts various portions of the stock to various reservoirs. This, in
turn, defines a mass balance equation at each date t, represented as a sum of fluxes,
i.e., net changes land, atmospheric, marine, and fossil fuel carbon stocks, the sum of
which zeroes out in the aggregate:

Many of the regulating forces that determine the mass balance are non-anthropogenic,
including plant photosynthesis and respiration and carbon diffusion between oceans
and atmosphere. However, these flows are also influenced by human activities. Both
anthropogenic and non-anthropogenic forces account for flows into and out of terres-
trial or land carbon biomass. Formally:

ωlant = ωlant−1 − (clant − rlant ) + slant , (1)

where ωlant denotes the land carbon stock at t. It comprises the terrestrial stock
of carbon found in plants, animals, leaf litter, and organic matter in soils. The
anthropogenic sources are clant and rlant . Here, clant is the consumption/emissions into
the atmosphere from the land stock, while rlant is the removal from the atmosphere
and into land carbon stocks at date t. Land consumption constitutes activities
such as deforestation, agricultural harvests, animal husbandry, and natural resource
extraction. Removals (from the atmosphere) include reforestation, replanting, and
preservation. Logically, the emissions and removals activities must be distinguished
since removals are akin to an investment in future capacity and so it does not directly
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enter into current output of any country. The difference clant − rlant accounts for land
use change and forestry (LUCF).4

The term slant is the global land sink representing non-anthropogenic removals of
carbon from the atmosphere. It comprises the total net carbon absorption by un-
managed biomass due to photosynthesis and other factors. By definition it excludes
LUCF.

Land sink is affected by a “wide range of environmental changes which include
climate change (water and temperature), disease outbreaks, added nutrients (CO2
and nitrates), ... and re-growth of vegetation in natural (unmanaged) land that is not
included under the UNFCCC reporting guidelines for LULUCF.” (Ito et al. (2008),
p.3292). The definition accounts for most of the feedback effects of greenhouse gases
that are not directly associated with contemporaneous human activity.

Both land use and fossil fuel consumption produce carbon flows from terrestrial
carbon stocks and fossil fuel reserves into atmosphere. At the same time, atmospheric
greenhouse gases flow back to land stocks via a land sink absorption mechanism.

Recent results from Hikosaka et al. (2006) Raupach et al. (2014), Xu (2015),
Zheng et al. (2018), and Hubau et al. (2020) indicate an inverted-U relationship
between atmospheric greenhouse gases gt−1 and the land sink absorption rate, ρt ≡
slant /ωlant−1, the land sink per unit of land stock, entering period t. The absorption
rate ρt can be either positive or negative, taking values in [−1,∞). Negative values
correspond to respiration and decomposition rates that exceed in total the rate of
photosynthesis. At low atmospheric concentrations, increases in CO2e in the atmo-
sphere increases the activation energy in plant photosynthesis. Consequently, carbon
uptake (photosynthesis net of plant respiration) rises. After some point, however,
increased GHG concentrations become toxic and/or higher temperatures deplete nu-
trient and moisture retention which further reduces uptake. Related mechanisms are
studied by Fernandez-Martinez et al. (2017), Thomson et al. (2008), and Feng et al.
(2015). To account for these effects, we posit

ρt ≡
slant
ωlant−1

= F (gt−1; π) (2)

where F is a continuous function of gt−1 and π is a vector of parameters. We refer
to F as the sink absorption function. We later postulate and estimate the parameter
vector π for a flexible absorption function. To isolate the effects on land carbon, the

4Following upgraded measurement, the United Nation’s new designation is “Land use, land use
change, and forestry” (LULUCF), though the original terminology still dominates the literature.
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Figure 1: Rudimentary Land-Atmosphere Carbon Cycle.

sink absorption function (2) is the only feedback mechanism in the model. Other
feedback effects on, say, marine ecosystems, are not incorporated.

Let cfost denote fossil fuel consumption at t. Combining Equations (1) and (2)
with a mass balance of carbon reservoirs, one obtains a rudimentary version of the
land-atmospheric carbon cycle. The channels for this cycle are illustrated in Figure
1.

2.2 Output and Equilibrium Land Use Policies

Land emissions and removals are choices made by countries and depend on the coun-
try’s stock of terrestrial carbon found in biomass and soils. Adding an “i” subscript
to each of the variables, we obtain country i’s land carbon stock ωlanit at the end
of period t. We also obtain i’s land emissions clanit , fossil fuel emissions cfosit , its
atmospheric removals rlanit , and its land sink slanit . These aggregate to global levels
as expected: ωlant =

∑
i ω

lan
it , cfost =

∑
i c
fos
it , clant =

∑
i c
lan
it , rlant =

∑
i r
lan
it , and

slant =
∑

i s
lan
it .
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The country-specific version of the land stock dynamic in Equation (1) is

ωlanit = ωlani t−1 − (clanit − rlanit ) + slanit . (3)

Like their global counterparts, clanit incorporates activities such as harvesting, soil
drainage, and deforestation within country i, while rlanit includes replanting, reseed-
ing, and reforestation. The land sink slanit of country i represents non-anthropogenic
removals from the atmosphere that feed directly into the country’s land stock.

At the country level, human activities enter into a country’s output each period.
The output yit of country i is generated by the production function

yit = Aiεit(c
lan
it )αi(ωlanit )βi(cfosit )γiHζi

itL
ηi
it . (4)

In this expression Ai is a TFP scale parameter for country i, and εit is a log
normally distributed iid shock with mean 1. The inputs are land use clanit , land stock
ωlanit , fossil fuel consumption cfosit , labor Lit, and a capital-emissions intensity variable
Hit. The input Hit is a TFP component, defined as the ratio, Kit

cfosit

, where Kit is the

capital stock of country i. Input Hit captures various technological changes over
time. These changes are distinguished in a Kaya-like decomposition of Hit,

Hit =
Kit

cfosit

=
Kit

Eit
× Eit

cfosit

, (5)

where Eit is the energy usage (in GJ) of country i in t. Assumptions about future
changes in ratios Kit

Eit
and Eit

cfosit

are common in climate models and IAMs. We return

to these later on.

Notice that while physical capital Kit does not directly enter the production
equation (4), variations in capital are jointly captured by variations in fossil fuel
emissions cfosit and the capital-emissions intensity Hit. We point out in fact that
when βi = 0 and γi = ζi, the output model (4) reduces to

yit = Aiεit(c
lan
it )αiKζi

itL
ηi
it .

In other words, a special case of (4) is the standard Cobb-Douglas production model
with the usual inputs: capital, labor, and land. The special case where βi = 0
conforms to a more traditional resource model in which carbon stock matters only
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through its consumption.5 The model allows for βi = 0 and even βi < 0.6 One
might nevertheless expect direct and positive effects of land stock (βi > 0) due to
improved soil nutrition, drainage, erosion prevention, flood control, waste filtration,
and climate stabilization. In addition, the possibility that γi 6= ζi allows for output
to respond differently to fossil fuel consumption and to emissions-reducing improve-
ments in the use of capital.

The effects of GHG emissions enter Equation (4) through its effect on land car-
bon stock. The details of the radiative forcing process are omitted. By contrast,
IAMs, damage to GDP from climate change is postulated as an increasing function
of global surface temperature. In turn, surface temperature increases with green-
house gas (GHG) concentrations from energy use. A canonical representation is the
DICE model (e.g., Nordhaus (2018)). There, the damage function negatively en-
ters the TFP component in a standard production technology. Parameter values of
the damage function are fixed or estimated from external studies and then used to
calibrate the long run effects of climate change on output.

Combining the output Equation (4) with the law of motion for carbon stock in
Equation (3), we obtain

yit = Aiεit(c
lan
it )αi

(
ωlani t−1 − clanit + rlanit + slanit

)βi
(cfosit )γiHζi

itL
ηi
it . (6)

Land consumption clanit appears as both a direct and indirect input, the latter entering
negatively through the land stock.

A policymaker from country i maximizes the discounted long run payoff

∞∑
t=0

δt
[
log(yit) + θi log(ωlani t−1 − rlanit )

]
. (7)

given (6). Equation (7) is a reduced form payoff defined directly over output. The
first term is i’s flow payoff from yit. The second term is its payoff from services
derived from land stock net of investments (removals) to expand it. This term
is the payoff from home production or, alternatively, the payoff from eco-services

5In pure extraction models, e.g. Levhari and Mirman (1980), Cave (1987), Fisher and Mirman
(1992), conservation is valued for instrumental reasons: preserving the stock allows the decision
maker to smooth consumption. The non-instrumental trade offs modeled are somewhat similar to
models of Dutta and Radner (2004, 2006, 2009) who study dynamic strategic models of energy
usage with emissions externalities, and Harrison and Lagunoff (2017, 2019) who also incorporate
carbon stock as productive input.

6At a local level, invasive plant species could produce βi < 0. The equilibrium conditions
introduced later on will imply restrictions on the sum αi + βi.
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including tourism, outdoor leisure, and general enjoyment of green space. Home
production is relevant in developing countries where the land ecosystem is a non-
monetized input that maintains soil stability, water filtration, and so on. This second
term is assumed decreasing in rlanit , reflecting the cost of augmenting and reseeding
the stock. Without this cost, the policymaker would arbitrarily scale up removals,
thereby allowing infinite consumption of land carbon.

At each date, the policy maker chooses land activities clanit and rlanit . The assump-
tion that land activities are policy choices contrasts with most models of land use
where activities are determined in a perfectly competitive market.7 The reality is
that most national governments exercise substantial power over their countries’ land
stocks. In many countries the bulk of carbon biomass is on nationally owned land.
In China, for instance, more than half of its territory and nearly all its forest land is
publicly owned by the state. In the U.S. 28% of its territory is nationally held, and
this excludes property held by various state governments (Rights and Resources Ini-
tiative, 2015; Vincent, Hanson, and Argueta, 2017). Even when property is privately
held, federal laws governing private and public takings, pollutants, forestry, water
and waste management, zoning restrictions, safety, building codes, and an array of
subsidies and taxes implicate government in virtually all forms of land use.

The collection of land use decisions constitutes a dynamic game among countries.
A land carbon policy for country i is a pair of Markov strategies clan

i and rlani that
map at each date from the initial stock ωlani t−1 and land sink slanit to land use clanit and
removals rlanit , respectively. A Markov Perfect equilibrium (MPE) describes a land
policy for each country that maximizes its representative citizen’s long run payoff
(7) at each t for every stock, given land policies of other countries.8

By construction, the collection of land policies constitutes an MPE if, given the
land policies of other countries, each country’s land policy satisfies the Bellman

7Detailed dynamic modeling of land use is found in the dynamic Global Trade Analysis Project
(GTAP), include Golub, Hertel, and Sohngen (2008).

8MPE are Subgame Perfect equilibria in Markov strategies. The formal definition and notation
are omitted for brevity.
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equation

Vi(c
lan
i , rlani ;ωlani t−1, s

lan
it ) = max

clanit ,rlanit

{
αi log(clanit ) + βi log

(
ωlani t−1 + rlani,t + slanit − clanit

)
+ θi log(ωlani t−1 − rlanit ) + γi log(cfosit ) + ζi log(Hit) + ηi log(Lit)

+ δ E
[
Vi(c

lan
i , rlani ;ωlani t , s

lan
i t+1)

] }
subject to sink absorption function (2).

(8)

Equation (8) excludes the constant term log(Ai) and current log productivity
shock log(εit). Under the log normal assumption the shock does not figure in the
policymaker’s decision problem.

In the MPE, countries consider the both structural and strategic consequences
of their land use emissions and removals, the latter via net increases in atmospheric
stock gt. To simplify the equilibrium, each country solves its Bellman equation
assuming its effect on the aggregate state is negligible. Specifically, each country
chooses its land policy assuming that ∂gt

∂clanit
= ∂gt

∂rlanit
= 0. The “Negligibility” assump-

tion is a reasonable approximation of the empirical relationship. At any given time,
a country’s LUCF is a small fraction of global emissions and a minuscule fraction of
total atmospheric GHGs.9 Negligibility simplifies the model by breaking down the
game into a collection of interacting dynamic optimization problems.

We refer to the collection (clan
i , rlani ), i = 1, . . . , n that solve the Bellman equa-

tion for each i under Negligibility as simply an equilibrium.10

The following proposition establishes that the country’s Bellman equation admits
a simple closed form solution:

9In 2015, for instance, total fossil fuel emissions by the U.S. constituted the fraction 8.332E-9 of
total GHG concentrations.

10An equilibrium by this definition can be shown to be an approximate Markov Perfect equilibrium
in the sense that the equilibrium converges uniformly to a full MPE as the true marginal effects
of one’s land policy on total atmospheric concentrations converge to zero. The assumption does
not imply that a country regards its own land sink as exogenous. By Equation (2), land sinks are
proportional to carbon stock, and the effects of an incremental change in its own carbon stock are
fully internalized by the country.
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Proposition 1 In any equilibrium, each country’s land carbon policy is given by

clanit (ωlani t−1, s
lan
it ) =

αi(1− δ)(2ωlani t−1 + slanit )

αi + βi + θi

rlanit (ωlani t−1, s
lan
it ) = ωlani t−1 −

θi(1− δ)(2ωlani t−1 + slanit )

αi + βi + θi
.

(9)

The equilibrium exists whenever αi > 0 and αi + βi + θi > 0 for each i. If βi > 0,
then θi > 0.

The derivation of (9) is in Appendix 7.1. A country’s equilibrium land emissions
and removals are multilinear functions of lagged land stock ωlani,t−1 and current land
sink sit. Emissions (removals) are decreasing (increasing) in the discount factor since
the upside to removals comes in the future.

Recall that αi, the production coefficient on land emissions, represents that out-
put responsiveness to increases in land use. Both emissions and removals are in-
creasing in αi. The increase in removals owes to the fact that removals represent a
re-investment in land carbon that enables increased land consumption in the future.

Parameter βi, the coefficient on land stock, represents output responsiveness to
the ecosystem. Emissions (removals) are decreasing (increasing) in βi.

Existence of equilibrium requires some parametric restrictions. If αi ≤ 0 then
the country should generate no land use emissions. If βi > 0 and θi ≤ 0 then the
country should accumulate an unbounded volume of biomass. If αi + βi + θi < 0,
then the country should immediate deplete its land stock. Payoffs are ill-defined in
all these cases.

Note that the cases βi < 0, and even αi + βi < 0 are consistent with existence
of an equilibrium land policy. Changes in land stock can be negatively related to
measured GDP growth due the presence of home/non-monetized production. With
home production, a reduction in land biomass can lead to greater substitution toward
monetized output and away from home production. This “substitution effect” is
likely more prevalent in developing countries and could produce a sum αi +βi that’s
negative. In that case, θi must be large relative to |βi| so that the sum αi + βi + θi
remains positive.

Later on, the model is specialized to the case where land sink absorption rates
slanit /ω

lan
t−1 are identical across countries. In that case equilibrium land policies in (9)
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can be alternatively expressed simply as

clanit (ωlani,t−1, ρt) =
αi(1− δ)ωlani,t−1(2 + ρt)

αi + βi + θi

rlanit (ωlani,t−1, ρt) = ωlani,t−1 −
θi(1− δ)ωlani,t−1(2 + ρt)

αi + βi + θi
.

(10)

Equation (10) displays the sensitivity of land use policies to changes in the land sink
absorption rates.

3 Structure and Identification

The assumption of our empirical strategy is that the countries in the sample behave
as the equilibrium described above. The structural parameters in the production
model are αi, βi, γi, ζ, ηi, θi, and the TFP parameter, Ai. In principle, these would be
identified from the transition rule (3), the output equation (either (4) or (6)), and
the pair of equilibrium land policy equations in (10) over a long enough time series.

One concern is that the equilibrium policy rules are all linear in stocks. A related
problem comes from the data itself. Available data on land policies does not, to
our knowledge, separate out land consumption clanit , land removals rlanit , and land
sink sit. All three are combined in measurements of net emissions from land after
accounting for removals and sinks. However, only consumption (as measured by
emissions) generates current production. To address these problems, equilibrium
land use policies in (9) are incorporated directly into the output equation (6) to
produce a tractable “reduced form” equation in variables for which there is data.
This yields the following equation system expressed in natural logs:

Yit = constanti + BiXi1t + γiX2it + ζiX3it + ηiX4it + εit (11)

where

Yit = log(yit) (12)

Xit1 = log
(
2ωlani t−1 + slanit

)
(13)

slanit = ωlani t−1ρt (14)
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X2it = log(cfosit ) (15)

X3it = log(Hit) (16)

X4it = log(Lit) (17)

constanti = log(Ai) +αi log

(
αi(1− δ)
αi + βi + θi

)
+βi log

(
1− (1− δ)(αi + θi)

αi + βi + θi

)
(18)

Bi = αi + βi (19)

and

εit = log(εi,t) (20)

In the equation system (11)-(20) the main explanatory variable X1it is a log
composite of one-period lagged carbon stock ωlani t−1 and land sink slanit . In turn, the
country’s land sink slanit is a product of its lagged stock ωlani,t−1, and absorption rate

ρt. Variables X2it,X3it, and X4it are logs of cfosit , Hit, and Lit and respectively.

Equation (14) follows from a simplifying assumption that the sink absorption
function F in Eq. (2) is the same for all countries. The country absorption rates are
then computed from global absorption rates according to ρt = slanit /ω

lan
i,t−1 for each

country i. Since ρt is observed directly, the functional form of F and the parameter
vector π is not needed for the output estimation. But these will be needed later on
for the simulation exercise.

The key parameters αi and βi are not point identified. However, the sum Bi =
αi + βi is. As pointed out earlier this follows from the fact that equilibrium policies
clanit and rlanit are collinear in the lagged stock ωlani t−1. The other production coefficients
are identified. For purposes of pinning down equilibrium policies, the sum Bi would
suffice were it not for payoff parameter θi which is also not identified. It appears in
the constant term, as do pre-determined parameter δ and Ai. However, since the
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data limitation prevents one from observing the individual policies in any event, we
are left to focus on the equilibrium “reduced form” equation (11) for GDP. This
equation can be pinned down up to a scale constant that can be estimated alongside
coefficient Bi and the remaining structural parameters.

Clearly, Bi = αi + βi is the coefficient of interest. It approximates a policy-
adjusted output elasticity under equilibrium land use. The policy-adjusted elasticity
is derived from the following terms. Let y∗i (ω

lan
i,t−1, s

lan
it ) denote the indirect production

function when equilibrium land use policies clanit (ωlani,t−1, s
lan
it ) and rlanit (ωlani,t−1, s

lan
it ) are

in place. Carbon stock enters both as a direct input and as an indirect input via the
equilibrium land use. The combination of the two in the log output equation yields

αi log(clanit (ωlani,t−1, s
lan
it ))+βi log

(
wlani,t−1 − clanit (ωlani,t−1, s

lan
it ) + rlanit (ωlani,t−1, s

lan
it )) + slanit

)
= (αi + βi) log(2ωlani,t−1 + slanit ) = (αi + βi) log(ωlani,t−1(2 + ρt)) ≡ BiXi1t (21)

The last line in (21) follows from Equations (2) and (14). In this expression, the
composition of shares in y∗i into ecosystem and land consumption are described by
the combined term BiXi1t. From the term BiXi1t, one derives the policy-adjusted
(output) elasticity of the y∗i with respect to lagged carbon stock ωlant−1. The policy-
adjusted elasticity, comprising a combination of direct and indirect changes in carbon
stock, is approximated by Bi1. Specifically,(

∂y∗i
∂ωlani,t−1

)(
ωlani,t−1

y∗i (ω
lan
i,t−1, s

lan
it )

)
≈ Bi ≡ αi + βi (22)

Overall, land stocks are altered by carbon sink absorption and absorption rates
are, in turn, altered due to GHG concentrations. Bi1 then approximates the response
in current output to increased GHGs.

4 Quantifying the Effects of Land Carbon

4.1 Overview

This section quantifies the effects of land carbon on GDP in the system of equations
(11)-(20). Subsection 4.2 describes the data. Subection 4.3 contains estimates of
the production parameters. The estimated parameters, along with those of a land
sink absorption function, are subsequently used as calibrating parameters in the
simulations in Section 5. A complete description of sources and constructions are in
Appendix 7.4.
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4.2 The Data

The relevant times series are the country and global land stocks, {ωlanit } and {ωlant },
resp., the country and global land sinks {slanit } and {slant }, resp., global GHG at-
mospheric stock {gt}, country-specific output {yit}, fossil fuel consumption {cfosit },
capital-emissions ratio {Hit}, and labor force {Lit}. Data for these time series spans
152 countries covering the time period 1990-2015.

Our data is constructed from sourced data by modifying stock and flow data to
conform with U.N. reporting requirements. Specifically, FAOSTAT, the U.N. Food
and Agricultural Organization’s database and the source for the country land carbon
stock series, {ωlanit }, publishes updates of country data every five years. These up-
dates are based on U.N. reporting requirements for countries. Hence, from here on the
dates t will range over the 5 year increments. i.e, t = 1990, 1995, 2000, 2005, 2010, 2015.
This presents no problem for the theory since the model is agnostic about the length
of a decision period. The notation “τ” will be used to represent annual time periods.
Data on stocks {ωt, ωlanit , gt, Hit, Lit} are then reported at quinquennial dates t. The
data on flows are also reported at quinquennial dates t but represent aggregates over
the past five years, up to and including the quinquennial date. Consequently, the
flow data represented by a “tilde” on the variables are defined as

s̃lant =
4∑

τ=0

slant−τ , c̃fosit =
4∑

τ=0

cfost−τ , ỹit =
4∑

τ=0

yt−τ (23)

for t = 1990, 1995, 2000, . . . , 2015. In addition,

ρ̃t ≡
s̃lant
ωlant−5

and s̃lanit = ρ̃t ω
lan
i,t−5 (24)

are the quinquennial analogues of the earlier specification. The absorption rate is
applied to individual countries.

A summary of the variables, measurement units, and sources are listed in Table
1. These variables will those used to estimate the equation system (11)-(20). Re-
garding units of measurement listed in the Table, atmospheric stocks include carbon
and non-carbon GHGs, measured in gigatonnes (Gt) of carbon dioxide equivalent
(CO2e). Units of CO2e convert all green house gases into CO2 by measuring Global
Warming Potential, a relative measure of how much heat a greenhouse gas traps in
the atmosphere.11 Raw data on land stocks and flows include only carbon, but are

11Definitions and conversion factors are provided in the Appendix.
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converted to Gt CO2e units only for the purpose of having a simple, common unit
of account. Land stocks and flows are kept separate from GHG measurements that
include non-carbon sources. Full details on units of measurement, conversion factors,
data sources, and constructions are in Appendix 7.4.

Table 1: Summary of Data Variables.

Symbol Units Description Source

ωlant Gt CO2e Global carbon stock Global Carbon Project
ωlanit Gt CO2e Country i carbon stock FAOSTAT
gt Gt CO2e Global GHG (incl. non-carbon sources) NOAA
s̃lant Gt CO2e Global land carbon sink - last 5 yrs Global Carbon Project
s̃lanit Gt CO2e Country i land carbon sink - last 5 yrs calculated in Eq. (24)

c̃fosit Gt CO2e Country i fos. fuel emit. over last 5 yrs World Resources Inst.
Kit 1012 PPP 2011 USD country i capital stock Penn World Tables 9.1

Hit Kit/c̃
fos
it capital stock-emissions ratio calculation

Lit population Country i labor force World Bank
ỹit 1012 PPP 2011 USD Country i GDP over last 5 yrs World Bank

All stocks are end-of-quinquennial time period. Variables with “tildes” are aggregates of annual flows over the five year year
period up to and including the quinquennial year.

4.3 Production Parameters

We group countries according to the United Nation’s Human Development Index
(HDI). The HDI formulates criteria for four distinct country groups: High Devel-
opment, Medium High Development, Medium Low Development, or Low Develop-
ment (United Nations Development Programme, 2019). The HDI partition allows
for heterogeneous production according to different levels of development while also
maintaining large enough sample sizes within each cluster to obtain meaningful esti-
mates. We cross-check our results against other clustering strategies and other model
specifications.

The production coefficients are assumed identical across all countries within each
development group k where k = H,MH,ML,L. We also consider the global cluster
k = world. The estimating equation (11) then reduces to

Yit = constanti + BkXi1t + γkX2it + ζkX3it + ηkX4it + εkt (25)

for country i in HDI cluster k with Bk = αk + βk, and all variables are defined by
the equation system (11)-(20).
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Table 2: Policy-Adjusted Elasticities by HDI Cluster.

Dependent Variable - Log GDP
Medium Medium

Coefficients High High Low Low All

B Carbon Stock 0.250∗∗∗ 0.946∗∗∗ 0.050 0.109 0.294∗∗∗

(0.081) (0.174) (0.152) (0.098) (0.062)
γ Fossil Fuel 0.769∗∗∗ 1.083∗∗∗ 1.103∗∗∗ 0.861∗∗∗ 0.992∗∗∗

(0.092) (0.113) (0.106) (0.099) (0.054)
ζ K/cfos ratio 0.355∗∗∗ 0.132∗∗∗ 0.184∗∗∗ 0.174∗∗∗ 0.242∗∗∗

(0.023) (0.038) (0.040) (0.124) (0.016)
η Labor Force -0.050 0.096 0.289∗∗ 0.496∗∗∗ 0.136∗∗

(0.081) (0.162) (0.168) (0.132) (0.069)

Observations 184 168 136 120 608
R2 0.998 0.995 0.996 0.993 0.997
F Statistic 1459.2 513.2 619.3 627.1 834.4

Includes Country-Fixed Effects. Standard errors in parentheses. Symbols *, **, and *** indicate statistically
significant at the 10%, 5%, and 1% levels, respectively. Based on Human Development Index (HDI), U.N.
Development Programme. #Observations = # countries in cluster × 4 lagged quinquennial time periods up to
2015.

We control for country-specific fixed effects by maintaining heterogeneity of the
constant term (via the scale term Ai). The main focus is the policy-adjusted output
elasticity of land carbon stock Bk. Results are in Table 2. The last column refers to
the global cluster (all countries in a single grouping). The estimates for Bk are all
positive and are statistically significant in the High or Medium High development
clusters and in the global cluster.12 Estimates of Bk for lower development countries
are positive but not significantly different from zero. Estimates of elasticities of fossil
fuel emissions and capital-to-emissions ratios for all clusters are all significant.

The policy-adjusted elasticity approximates the incremental effects of land carbon
stock on annual GDP. Using the global cluster, a 1% increase (decrease) in global
land carbon is associated with a roughly 0.29% increase (decrease) in annual GDP
over the five year period following the change in carbon stock. The change in GDP
includes the effects of both the increased (decreased) land consumption and the
altered ecosystem.

At a more disaggregated level, consider a country in the High development cluster.
A 1% increase in its land carbon is associated with a 0.25% increase in total GDP
over the next five year period. In the U.S. the observed increase land carbon stocks

12Unless otherwise stated, the references to statistically significance in the text refer to the 1%
level.
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from 2011 to 2015 was, in fact, around 1.5%. Based on a conservative estimate for its
five year U.S. GDP in the quinquennial period 2016-2020 of 94 trillion (2017 constant
dollars), the increase would account for around 0.353 trillion USD.

In China, a country in the Medium High cluster, the effects are substantially
larger. A 1% increase in its land carbon is associated with a 0.946% increase in
total GDP the next five year period. The observed increase in Chinese land carbon
from 2011-2015 was 6.7%. Applied to an estimated five year GDP of 61 trillion from
2015-2020, the increase in land carbon stock accounted for roughly 3.87 trillion USD.

Of the change in land carbon stocks, around two thirds was due to reductions in
land emissions and/or increases in removals. The other third is from the land sink.
Consequently, any large reductions in land sink absorption rates over the next few
decades could have sizable cumulative effects on GDP in High and Medium High
countries.

Robustness. We compare the estimates in Table 2 to those for several other parti-
tioning/clustering strategies. These are described in an online appendix and support
findings in Table 2 that estimated policy-adjusted land carbon elasticity B is sta-
tistically significant for groupings dominated by developed countries. Groups where
the estimated B is indistinguishable from zero consist of highly forested countries
in subsaharan Africa and Asia. The higher initial resource stock and lower level of
development may have rendered these country’s outputs less responsive to changes
in the ecosystem thus far.13

In addition, we examine some alternative model specifications. We note that both
carbon stocks and GDP have generally increased in developed countries since 1990.
Whereas, in low development countries, GDP has generally increased while carbon
stocks in some heavily forested countries declined or remained flat. In principle,
this time trend could account for significant land carbon estimates in High but not
Low HDI countries. This raises the question of whether the land carbon-output
association is explained by an omitted variable reflected in time trend in the sample
period.

It turns out this is unlikely. Much of the trend can be accounted for in the
capital emissions ratio Hit which trends upward in most countries, but especially in
developed countries. To confirm this, we evaluate two alternative specifications. In
the first alternative, we shut down the trend in Hit, assuming it to be constant over

13The model does not address other ways in which developing countries may be vulnerable to
climate change. See Althor, Watson, and Fuller (2016) and other references in the Introduction.
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time. In the second alternative, we substitute a pure time trend variable in place of
Hit. The estimates for both these alternative specifications are reported in Tables 6
and 7 in Appendix. 7.5. In both alternative specifications, the land carbon elasticity
estimate remains significant for the High and Medium High Development countries.
This indicates that the correlation between land carbon and GDP is not simply due
to time trend and that Hit reasonably controls for it.

5 Simulated Time Paths for 2020-2100

This section describes details and results of an exercise to simulate the model time
paths for land carbon stocks and GDP over all country clusters. Subsection 5.1 esti-
mates a parametric absorption function in an “active” sink model (with potentially
declining sink rates), and a constant sink model. The simulation incorporates the
estimated parameters under both models for each of the four standard Representa-
tive Concentration Pathways (RCPs) developed by research teams for IPCC’s Fifth
Assessment Report, 2014. Subsection 5.2 describes the simulation algorithm. Sub-
section 5.3 describes the RCP scenarios in the IPCC’s report. Using the algorithm,
future land sink absorption rates are forecasted in each scenario and under different
land sink specifications. Subsection 5.4 displays simulation results for land stocks.
Subsection 5.5 displays simulation results for GDP.

5.1 Land Sink Absorption Parameters

We first estimate a parametric form of land sink absorption function F in (2). Assume
F satisfies

log(ρ̃t + 1) = π0 + π1 gt−5 + π2 g
2
t−5 + µt (26)

Equation (26) posits ρ̃t, the absorption rate defined in (24), as a Gaussian function
of lagged GHG concentrations. The Gaussian function satisfies boundary conditions,
and if π2 < 0 then the crucial property that sink absorption is an inverted-U function
of concentrations is satisfied. The unit adjustment to ρ̃t in the log term adjusts for
the fact that ρ̃t can be negative, as long as ρ̃t > −1. Unlike a quadratic which falls
rapidly after reaching a peak, the value of ρ̃t in (26) gradually declines and converges
slowly to its lower bound. µt is a mean zero disturbance in the sink rate, assumed
uncorrelated with concentrations.
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Table 3: Estimated Parameters of Sink Absorption Equation
(26).

π0 π1 π2

Land sink parameter -0.500∗∗ 3.02E-4∗∗ -4.19E-8∗∗

(0.277) (1.65E-4) (2.44E-8)

R2 0.485
F-stat 12.7
Model P -value 1.3E-4

Standard errors in parentheses. Symbols *, **, and *** indicate statistically significant
at the 10%, 5%, and 1% levels, respectively. The sample period covers 1987-2016 for
sink absorption rates, and 1982-2011 for quinquennially lagged GHG concentrations.
The full description is in Appendix 7.6.

We refer to Equation (26) as the active sink model in order to contrast it with
the a constant sink model in which the absorption rate is held fixed at its empirical
average value ρ = 0.043 over the sample period. The estimated values π̂0, π̂1, π̂2 of
the active sink model, reported in Table 3, are significant (5% level). Moreover, the
negative coefficient π2 provides support for inverted-U sink absorption function in
which terrestrial carbon uptake (photosynthesis net of plant respiration) rises then
falls (Hikosaka et al. (2006), Thomson et al. (2008), Raupach et al. (2014), Xu (2015),
Feng et al. (2015) Fernandez-Martinez et al. (2017), and Zheng et al. (2018)). In
the fitted absorption function, the global absorption rate reaches a maximum at
atmospheric stock around gt = 3650 Gt CO2e (467.35 ppm CO2e) and declines
thereafter. This is lower than peak CO2 absorption at constant temperatures (Xu
(2015) and Thomson et al. (2008)), suggesting that climate plays a role. Specifically,
separating out climate change effects from the pure toxicity/nutrient effects, the
former also contributes to reduced sink capacity. The fitted active and constant sink
equations are displayed against GHG concentrations data in Figure 2.
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Figure 2: Estimated Land Sink Absorption Function.

We later run simulations in both active and constant sink models, the latter to
obtain a benchmark for measuring the feedback effects in the model.

5.2 The Simulation Algorithm

Using the estimates as calibrated parameters, we simulate the model for each of the
four Representative Concentration Pathways (RCPs). The meaning and interpre-
tation of the RCPS are described in the next subsection. From the source data for
each RCP, we construct a forecast {gt, RCP} for atmospheric stocks, for country emis-

sions {c̃fosit,RCP}, and for capital-emissions ratios {Hit,RCP}. Using these, along with a

forecasted labor series {Lit}, we simulate dynamic paths, {ỹit,RCP} , {ωlanit,RCP}, and
{s̃lanit,RCP}, t = 2020, 2025, 2030, . . . , 2100.

The simulation algorithm produces model-generated series for land stocks and
GDP as follows: Step (i): construct the predicted global land sink absorption series{ ˜slant,RCP

ωlan
t−1,RCP

}
from the land sink estimation given parameter estimates π̂0, π̂1, and π̂2;

Step (ii): recursively generate the series for land stocks {ωlanit } from the model law
of motion under estimated parameters in equilibrium; Step (iii): generate model
paths of GDP from the estimated parameters B̂k, γ̂k, ζ̂k and η̂k for cluster k and
given the series {c̃fosit,RCP}, {Hit,RCP}, and {Lit}. Details of the RCP source data, our
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constructions derived from it, and the simulation algorithm is in Appendix 7.7.

5.3 RCPs and Simulated Land Sink

A Representative Concentration Pathway consists of various projected time paths
for GHG emissions and concentrations. Each RCP corresponds to an increase, either
+2.6,+4.5,+6.0 or +8.5, in radiative forcing W/m2 at the end of the 21st century
relative to pre-industrial levels. Aggregating by region and sector, an RCP is based
on a projected path of carbon factors (carbon per energy unit, kg C/GJ) and energy
intensities (energy use per dollar income, GJ/$) from the present to the end of the
century. These projections are in turn generated by distinct integrated assessment
models of energy use, fossil fuel emissions, mitigation investments, technological
innovations.14 Lower carbon factor results from input substitution from high carbon
emitting sources to lower ones. Lower energy intensity results from combination of
technological innovation and conservation efforts.

See van Vuuren et al. (2011)) and the special issue on the RCPs in Climate
Change, 2011 for an overview and detailed descriptions of each of the RCPs. Table
4 provides a descriptive summary.15

Table 4: Summary of RCP Scenarios.

Scenario Carbon Factor Energy Intensity

RCP 2.6 Steepest decline Steepest decline
reaches lowest steady state reaches lowest steady state

RCP 4.5 Moderate decline Moderate decline
reaches intermediate steady state reaches intermediate steady state

RCP 6.0 Increase, peak, decline Moderate decline
reaches high steady state reaches intermediate steady state

RCP 8.5 Constant Slow decline
remains at highest steady state reaches highest steady state

The RCP 2.6 achieves the lowest concentrations scenario by 2100. It incorpo-
rates a carbon-limiting climate policy and higher rates rates of technological adop-
tion. RCP 8.5 is the highest, assuming higher population growth and slower rates of
technological improvement.

14Each RCP is based on a separate internally consistent model rather than on distinct parametric
assumptions on the same model.

15See also van Vuuren et al. (2011), Fig 4).
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Using RCP source data from the International Institute for Applied Systems
Analysis (IIASA), we construct series on atmospheric stocks {gt, RCP}, fossil fuel

emissions {c̃fosit, RCP}, and capital-emissions ratios {Hit, RCP} as t ranges over quin-
quennial dates from 2020-2100, and RCP ranges over the four pathways. The at-
mospheric series {gt, RCP} are then fed into the estimated absorption equation to
produce calibrated values of land sink absorption rates.

The projected values of absorption rates in the active sink model are displayed
at the global level in Figure 3. The rates are identical and constant in the constant
sink model. Figure 3 displays the global sink absorption rate ρ̃t ≡ s̃lant /ωlant−1 under
each of four RCPs from 2020 onward. In three of the four scenarios, absorption
ceases and turns negative by the end of the century. In these scenarios, CO2e atmo-
spheric concentrations increase to the end of the century, albeit at decreasing rate
for RCP 4.5. Negative values indicate a net outflow from land atmospheric carbon.
The outflow can occur for a variety of reasons, including stresses from increasing
or increasingly volatile temperature, destruction from severe weather events, and
impediments to nutrient absorption for high enough CO2 concentrations (Hikosaka
et al., 2006; Fernandez-Martinez et al., 2017; Raupach et al., 2014; Feng et al., 2015;
Xu, 2015; Zheng et al., 2018). Only in the lowest emissions scenario RCP 2.6 does
land sink increase. In this scenario, CO2e concentrations peak early and decline
thereafter as strong carbon policies and mitigation technologies take effect. Signif-
icantly, the data on growth in GHG concentrations from to 2016 has outpaced the
most severe scenarios posited in RCP 8.5.

The paths displayed are roughly consistent in shape though not in levels to fore-
casts of Thomson et al. (2008) who use the same RCP scenarios. The difference in
levels is likely due to the fact that they measure both non-anthropogenic and anthro-
pogenic (e.g., reforestation efforts) contributions to the land sinks. The latter utilizes
forecasts of carbon pricing scenarios. Here we look at only non-anthropogenic sink
capacity.
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Figure 3: Projected Global (Active) Land Sink Absorption Rates 2020-2100
by IPCC Representative Concentration Pathway.

5.4 Simulated Land Stocks to 2100

The results of Step (ii), the simulation of land carbon stocks for each cluster, each
RCP, and in both active and constant sink models are displayed in the panels in
Figure 4. Note that by keeping land sink absorption constant, the right-hand side
panels are entirely driven by simulated forecasts of land use practices. Time paths
of carbon stocks therefore do not vary across scenarios.

The graphs in Figure 4 displays the High and Medium high development country
clusters in the first row, and Medium Low and Low development clusters in the
second. For High and Medium high clusters, land stocks in the active sink model
are increasing in the low concentration scenarios RCP 2.6 and 4.5, as is the stock
in the constant sink model. There is almost no change between the constant sink
model and RCP 2.6. This is due to the fact that the roughly flat trajectory of
concentrations in 2.6 will, despite the active sink, appear as if the sink function is
constant. By contrast, in the high concentration scenarios RCP 6.0 and RCP 8.5,
land stocks decline significantly in the active sink model. This is especially true of
RCP 8.5. which shows a more than eight-fold decline.

As for Medium Low and Low development clusters, stocks decline in all clusters,
RCPs, and sink models. The contrast between high and low development countries

26



may be due to the fact that mitigation technologies and more sustainable land poli-
cies are already in use in the more highly developed countries. As with the higher
development clusters, the trajectories of the constant sink and low RCP active sink
scenarios are virtually identical, while the declines in the high concentrations and
active sink scenarios are dramatic.

Overall, the figures shows that intensive deforestation in the low development
countries leads to declines in land stocks. Increased reforestation in high development
countries leads to increases in stocks. A final panel, Figure 5, displays the global
trajectories in each model.
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Figure 4: Land Carbon Stocks 2000-2100, by Human Development Index
Country Cluster and IPCC Representative Concentration Pathway, Active
and Constant Sink.
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Figure 5: Global Land Carbon Stocks 2000-2100 by IPCC Representative
Concentration Pathway, Active and Constant Sink.

5.5 Simulated GDP to 2100

The final step in the exercise simulates GDP to the end of the century in each RCP
scenario, for each country, and for each cluster. With the exception of the labor
projections {Lit} which comes from the World Bank and U.N., all forecast data that
enter into the GDP simulation are constructed from RCP source data in IIASA and
research teams for IPCC’s Fifth Assessment Report.16

The results are displayed in Figures 6-9. Each figure corresponds to a development
cluster. The left-hand panel in each displays the four RCP scenarios in the active sink
model (i.e., the Gaussian sink function). The right-hand panel in each displays the
four RCP scenarios in the constant sink model Global GDP projections are displayed
in Figure 10. Table 5 computes average annual growth rates from 2020 to 2100 for
each cluster, scenario, and sink model in our simulation.

Comparing across RCPs in the active sink model. Figures 6-9 indicate that
by the end of the century, all clusters exhibit higher GDP in the lower concentra-
tions/emissions scenarios in both active and constant sink models. This is consistent
the assumptions underling the RCP emissions paths (van Vuuren et al., 2011). The

16Appendix 7.7.
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most striking feature is the leveling off and decline of GDP at the higher concen-
trations scenarios across cluster groups. A stark divergence among the RCPs occurs
around mid-century.

The active sink graphs for global GDP in the left-hand panel of Figure 10 displays
the sharp contrast between the scenarios. Globally GDP increases 10-fold in RCP
2.6 by the end of the century. This represents an average annual growth rate of
2.7% per year, roughly continuing current growth trends. RCP 4.5 exhibits more
moderate, but still positive average annual growth of 1.9%. Global GDP in RCP 6.0
peaks around 2080, then declines somewhat before leveling off in the last decade. Net
growth over the next 80 years is less than 1.3% per year. In RCP 8.5, global GDP
peaks earlier - around 2060 - and then declines precipitously. Net growth averages
out to only 0.6% per year.

Table 5 displays average annual growth rates in GDP in each cluster and scenario,
in both the active and constant sink models. As the scenario range from lower to
higher GHG concentrations, the average growth differential increases. In the specific
clusters the differences in GDP growth between low and high concentrations are
largest in the higher development countries. This reflects the higher and more reliable
estimates of policy-adjusted elasticities for these countries (Table 2).
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Figure 6: Annual Gross Domestic Product 2000-2100, Very High Develop-
ment Countries, by IPCC Representative Concentration Pathway, Active
and Constant Sink.
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Figure 7: Annual Gross Domestic Product 2000-2100, Medium High Devel-
opment Countries, by IPCC Representative Concentration Pathway, Active
and Constant Sink.
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Figure 8: Annual Gross Domestic Product 2000-2100, Medium Low Devel-
opment Countries, by IPCC Representative Concentration Pathway, Active
and Constant Sink.
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Figure 9: Annual Gross Domestic Product 2000-2100, Very Low Develop-
ment Countries, by IPCC Representative Concentration Pathway, Active
and Constant Sink.
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Figure 10: Global Annual Gross Domestic Product 2000-2100, by IPCC
Representative Concentration Pathway, Active and Constant Sink.
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Table 5: Ave. Annual GDP growth, 2020-2100, Active vs Constant Sink

Active Sink Scenario/HDI cluster H MH ML L

RCP 2.6 2.9% 2.0% 2.0% 3.7%
RCP 4.5 2.0% 1.4% 1.6 % 2.8%
RCP 6.0 1.1% 1.1% 1.6% 2.7%
RCP 8.5 0.45% -1.4% 1.3% 2.0%

Constant Sink Scenario/HDI cluster H MH ML L

RCP 2.6 2.9% 1.9% 2.0% 3.7%
RCP 4.5 2.1% 1.8% 1.6 % 2.9%
RCP 6.0 1.3% 1.8% 1.7% 2.8%
RCP 8.5 1.4% 1.8% 1.5% 2.4%

Comparing across sink models.

Comparing the left-hand and right-hand panels in Figures 6-10, one can see the
impact of the feedback effects of increasing greenhouse gas concentrations. GDP
growth is lower in all but the lowest RCP scenario. By the end of the century, the
active sink lowers global GDP by 8% in RCP 4.5, 19% in RCP 6.0, and 60% in
RCP 8.5 (Figure 10). The differences are largest in the medium high development
countries where sensitivity to declines in carbon stock is highest.

Table 5 displays the comparison in growth rates across the two models. The active
sink model displays equal or lower growth rates in all clusters/scenarios. Again, the
difference is largest in the medium high development countries and in the highest
concentrations scenario.

6 Concluding Remarks

The present paper analyzes a partial equilibrium model of the carbon-based ecosys-
tem. The effect of GHG concentrations on land sink absorption is the key feedback
from climate change to GDP in the model. We omit the complexities of the energy
market and focus instead on land carbon from a game-theoretic rather than perfect
competition perspective.

Naturally, land sink is one among many mechanisms that determine damage
from climate change. Even in isolation, its role is subtle. The effects of GHG
concentrations on output work both directly and indirectly via endogenous land use.
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We are not aware of other models that integrate the effects of non-monotone sink
absorption in similar fashion.

Estimated coefficients show that terrestrial carbon stocks, adjusted for equilib-
rium land use, have potentially large effects on GDP growth, particularly in more
highly developed countries. It is unclear why the GDPs of developed countries would
be more responsive to land stock changes. One possibility is that interdependencies
in more advanced technologies, e.g., computerization of wastewater management sys-
tems, are increasingly sensitive to small changes in the ecosystem.

The simulation model is calibrated to the estimated elasticities and parameters
of the active land sink absorption function over the 1990-2015 period. We project
out from current technological trends to establish an important baseline for future
global policies. The results display widely divergent trajectories between RCPs,
between developing and developed countries, and between the active and constant
sink models. All countries do well under low concentration scenarios. However, the
differences between high and low concentration scenarios are greatest for the high
and medium high development countries. This may have to do with the relative
insensitivity of GDP to land carbon in developing countries and their relatively
higher reliance on fossil fuels.

We urge great caution when interpreting the projections. The simulations are
based on a specific parametric absorption function. External validation exists for
some, but not all, of its attributes. A different approach is taken by Lubowski,
Plantinga, and Stavins (2005), who study anthropogenic removals in an econometric
model of land use and sinks. Their approach rules out non-monotone absorption rates
since sinks are calculated from removals using standard conversion tables (Birdsey,
1992). Hence, their approach is closer to our constant sink model. The studies that
validate the active land sink model are regional (e.g., the Hubau et al. (2020) analysis
of the Congo), or take place in controlled environments (Xu, 2015). Less is known
when CO2 concentrations reach unprecedented levels. This is most relevant for RCP
8.5 scenario in which concentration levels almost triple by 2100.

Not surprisingly, there is considerable controversy about the RCP scenarios them-
selves. Some claim that RCP 2.6 is all but impossible since the realized path of GHGs
has exceeded 2.6 by a wide margin since the scenario was initially published. Others
claim that the highest scenario, RCP 8.5, is too extreme to be considered a “business-
as-usual” scenario. The present study makes no claim about which, if any, is most
likely. By design it utilizes all four. Our intention is to present a broad collection
of “possible futures” as a way to facilitate comparisons both across countries and
across time.
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Finally, the present study focuses exclusively on GDP, a flawed indicator of cli-
mate costs. The high growth in output resulting from high emissions scenarios
may, in fact, be consistent with poor socio-economic indicators such as lower life
expectancy, wellness, and leisure, and increases in congestion, population density,
and crime. Even in the context of the model, comparisons are about GDP rather
than welfare. The model does not directly measure welfare and so the effects of
climate uncertainty are not studied. This simplifies the simulation strategy: the
simulations are, effectively, deterministic since shocks enter additively into GDP and
wash out in expectation. However, in terms of welfare the volatility of shocks matter
a great deal to a representative citizen who values consumption smoothing. In wel-
fare calculations, stochastic simulations that aggregate across payoff paths provide a
better indication of true climate costs (see, for instance, (Burke, Hsiang, and Miguel,
2015)). Future work will incorporate broad measures of well being into climate cost
scenarios.
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7 Appendix

7.1 Derivation of the Equilibrium Land Use Policies

Due to additively separability under log payoffs, we can drop the noise term εyit and

the terms Hit, c
fos
it and Lit from the derivation of equilibrium land policy for country

i. As these are not determined by the land-policy maker, none of these terms enter
into i’s land-policy function.

Consequently, we also drop the “lan” superscript and the country subscript “ i”
from land consumption clanit , removals rlanit , land stock ωlanit , and land sink slanit .

Dropping these terms, the structural equations are expressed as

ut = log(yt) + θ log(ωt−1 − rt) (27)

yt = Acαt (ωt−1 + st + rt − ct)β (28)

ωt = ωt−1 + st + rt − ct (29)

Now let

st ≡ `tωt−1, rt ≡ qtωt−1, ct ≡ etωt−1, (30)

The rates `t, qt, and et can potentially vary with t.

By equations (29) and (30),

ωt = ωt−1(1 + `t + qt − et) (31)

Given the notation above, the Bellman equation is

Ut(ωt−1) = max
e,t,qt

{α log(et) + β log (1 + qt + `t − et ) + θ log(1− qt)
+(α + β + θ) log(ωt−1) + δ Ut+1(ωt)}

(32)

7.1.1 Derivation of equilibrium Land Carbon Emissions Rate et

The first order condition in ei is

α

et
− β

1 + `t + qt − et
= δ

∂U

∂ωt
ωt−1 (33)
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Differentiating the value function,

∂U

∂ωt
=

α + β + θ

ωt
+ δ

∂U

∂ωt+1

(1 + `t+1 + qt+1 − et+1))

=
α + β + θ

ωt
+

(
α

et+1

− β

1 + `t+1 + qt+1 − et+1

)
1

ωt
(1 + `t+1 + qt+1 − et+1)

(second equality is from substituting FOC one period forward.)

(34)

Substituting (34) into the FOC (33), we obtain

α

et
− β

1 + `t + qt − et
= δ

ωt−1

ωt

[
(α + β + θ) +

(
α

et+1

− β

1 + `t+1 + qt+1 − et+1

)
(1 + `t+1 + qt+1 − et+1)

]
=

δωt−1

ωt−1(1 + `t + qt − et)

[
(α + β + θ) +

(
α

et+1

− β

1 + `t+1 +−et+1

)
(1 + `t+1 + qt+1 − et+1)

]
(35)

or

α(1 + `t + qt − et)
et

−β = δ

[
(α + β + θ)

(
α(1 + `t+1 + qt+1 − et+1)

et+1

− β
)]

(36)

Iterating forward yields

α(1 + `t + qt − et)
et

− β =
δ

1− δ
(α + β + θ) (37)

Solving for et yields

et =
α(1− δ)(1 + `t + qt)

(1− δ)(α + β) + δ(α + β + θ)θ)
(38)

We are not yet done since qt is also an endogenous choice by the country.

7.1.2 Derivation of equilibrium Land Carbon Removals Rate qt

The first order condition in qt is

− θ

1− qt
+

β

1 + `t + qt − et
+ δ

∂U

∂ωt
ωt−1 = 0 (39)

42



which we can rewrite as

θ

1− qt
− β

1 + `t + qt − et
= δ

∂U

∂ωt
ωt−1 (40)

Once more we differentiate the value function,

∂U

∂ωt
=

α + β + θ

ωt
+ δ

∂U

∂ωt+1

(1 + `t+1 + qt+1 − et+1))

=
α + β + θ

ωt
+

(
θ

1− qt+1

− β

1 + `t+1 + qt+1 − et+1

)
1

ωt
(1 + `t+1 + qt+1 − et+1)

(second equality is from substituting FOC one period forward. )

(41)

Substituting (41) into the FOC (40), we obtain

θ

1− qt
− β

1 + `t + qt − et
= δ

ωt−1

ωt

[
(α + β + θ) +

(
θ

1− qt+1

− β

1 + `t+1 + qt+1 − et+1

)
(1 + `t+1 + qt+1 − et+1)

]
=

δωt−1

ωt−1(1 + `t + qt − et)

[
(α + β + θ) +

(
θ

1− qt+1

− β

1 + `t+1 +−et+1

)
(1 + `t+1 + qt+1 − et+1)

]
(42)

or

θ(1 + `t + qt − et)
1− qt

−β = δ

[
(α + β + θ)

(
θ(1 + `t+1 + qt+1 − et+1)

1− qt+1

− β
)]

(43)

Iterating forward yields

θ(1 + `t + qt − et)
1− qt

− β =
δ

1− δ
(α + β + θ) (44)

Notice that this looks a lot like Equation (37). Since the right-hand side of (37)
and (44) are the same, we equate the left hand sides to obtain

qt = 1− θ

α
et (45)
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This is an easy equation that relates the equilibrium choices of qt and et. Substi-
tuting (45) into the equation (38) we obtain

et =
α(1− δ)(1 + `t + (1− θ

α
et))

(1− δ)(α + β) + δ(α + β + θ)
(46)

Solving for et (with a few steps of algebra) we obtain the equilibrium rate of land
carbon extraction

e∗t =
α(1− δ)(2 + `t)

α + β + θ
(47)

Finally, substituting (47) into the equation for qt, i.e., qt = 1− θ
α
et from (45) we

obtain he equilibrium rate of atmospheric removal:

q∗t = 1− θ(1− δ)(2 + `t)

α + β + θ
(48)

Multiplying e∗t and q∗t by ωlant−1 gives the resulting equilibrium consumption and
removal policies, c∗t and r∗t , respectively.

Multiplying both sides of (47) and (48) by the state ωt−1, we we obtain

c∗t =
α(1− δ)(2ωt−1 + st)

α + β + θ
and

r∗t = ωt−1 −
θ(1− δ)(2ωt−1 + st)

α + β + θ

(49)

7.2 Estimating Equation

We show how the equilibrium choices in (49) can generate a simple estimating equa-
tion.

Substitute the functions in (49) into the law of motion. This yields

ωt = ωt−1 + st + r∗t − c∗t
=

(
1− (1− δ)(α + θ)

α + β + θ

)
(2ωt−1 + st)

(50)
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Notice that one can separate out the term 2ωt−1 + st from the parameters. Our
estimating equation in logs, ignoring the scale term Ai, and fossil fuel cfosit , capital-
emissions Hit, and labor Lt, is

log(yt) = α log

(
α(1− δ)
α + β + θ

)
+β log

(
1− (1− δ)(α + θ)

α + β + θ

)
+(α + β) log (2ωt−1 + st)

(51)

So the first two terms on the right-hand side are constants. The second term has
the same coefficient, α+β as before, and the data is 2ωt−1 +st each period. Equation
(51) coincides with Equation (11) once the other variables, Hit, c

fos
it and Lit and the

error εit are added back. Notice that separate data series for individual consumption
ct and removals rt are not needed to estimate Equation (11).

7.3 Units of Measurement

• CO2e. Units of CO2e convert all green house gases (CH4 Methane, CO2
Carbon Dioxide, N2O Nitrous Oxide, and three fluorinated gases: Hydrofluo-
rocarbons, Perfluorocarbons, and Sulfur Hexafluoride) into CO2 by measuring
Global Warming Potential (GWP), a relative measure of how much heat a
greenhouse gas traps in the atmosphere. It compares the “amount of heat
trapped by a certain mass of the gas in question to the amount of heat trapped
by a similar mass of carbon dioxide.”

• Conversion factors. 1 PPM CO2e = 7.81 Gt CO2e. 1 Gt C = 3.67 Gt C02e

• Date t index and Period Length. The date “t” indexes quinquennial dates
1990, 1995, . . . , 2015 while “τ” indexes annual dates,
1990, 1991, 1992, . . . , . . . , 2015. In all the series below, a length of time is five
years (though for some purposes, annual rolling five year aggregates are used).
Flow data is a five year aggregated flow. Stock data is the value given in the
particular year. Data used in the input file consists of stock data in the years
at the end of a quinquennial time period t (e.g., stock data for the period 1991-
1995 is the stock year 1995), and flow data ending in 1995 that aggregates the
annual flows in a quinquennial time period, e.g., the yearly flows from 1991 to
1995.17

17FAOSTAT data conforms to U.N. reporting requirements of five year increments, each date t
represents the end of a five year period up to and including the current year. In particular, the
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• Country Index i. Country index i ranges over 152 countries that are in-
cluded in at at least one cluster: Albania, Algeria, Angola, Argentina, Arme-
nia, Australia, Austria, Azerbaijan, Bahamas, Bahrain, Bangladesh, Barbados,
Belarus, Belgium, Belize, Benin, Bhutan, Bolivia, Bosnia and Herzegovina,
Botswana, Brazil, Brunei Darussalam, Bulgaria, Burkina Faso, Burundi, Cabo
Verde, Cambodia, Cameroon, Canada, Central African Republic, Chad, Chile,
China, Colombia, Comoros, Congo, Dem. Republic Congo, Costa Rica, Cote
d’Ivoire, Croatia, Cyprus, Czech Republic, Denmark, Dominican Republic,
Ecuador, Egypt, El Salvador, Equatorial Guinea, Estonia, Ethiopia, Fiji, Fin-
land, France, Gabon, Gambia, Georgia, Germany, Ghana, Greece, Guatemala,
Guinea, Guinea-Bissau, Honduras, Hungary, Iceland, India, Indonesia, Iran,
Iraq, Ireland, Israel, Italy, Jamaica, Japan, Jordan, Kazakhstan, Kenya, Korea,
Rep., Kuwait, Kyrgyzstan, Laos, Latvia, Lebanon, Lesotho, Lithuania, Mace-
donia FYR, Madagascar, Malawi, Malaysia, Mali, Malta, Mauritania, Mauri-
tius, Mexico, Moldova, Mongolia, Morocco, Mozambique, Myanmar, Namibia,
Nepal, Netherlands, New Zealand, Nicaragua, Niger, Nigeria, Norway, Oman,
Pakistan, Panama, Paraguay, Peru, Philippines, Poland, Portugal, Romania,
Russia, Rwanda, Saint Lucia, Saint Vincent and the Grenadines, Saudi Ara-
bia, Senegal, Serbia, Sierra Leone, Singapore, Slovakia, Slovenia, South Africa,
Spain, Sri Lanka, Sudan, Suriname, Sweden, Switzerland, Tajikistan, Thailand,
Togo, Trinidad and Tobago, Tunisia, Turkey, Turkmenistan, Uganda, Ukraine,
United Arab Emirates, United Kingdom United States of America, Uruguay,
Uzbekistan, Venezuela, Viet Nam, Zambia, Zimbabwe.

7.4 Description of the Historical Data

• Global land sink: The data on global annual sink slanτ comes from the Global
Carbon Project 2018 (GCP 2018). GCP 2018 data is annual. The sink slanτ
(with τ representing a period of a year) is “estimated by the difference of the
other terms of the global carbon budget and compared to results of independent
Dynamic Global Vegetation Models forced by observed climate, CO2 and land
cover change (some including nitrogen-carbon interactions)...”18 The data used
in for our estimation are five year flows up to and including τ so that s̃lanτ =

UNCCC reporting procedures require countries to update their carbon measurement every 5 years,
typically in years ending in 0 or 5. measurements typically occur in years 1990, 2000, 2005, 2010,
and 2015. While FAOSTAT does report annual data, the data in the intervening years appears to
be extrapolated from the quinquennial reports.

18Le Quere et al. (2016), p. 3.
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∑4
j=0 sτ−j. Annual data on 5-year rolling aggregates is needed to obtain large

enough sample sizes for estimation (see Appendix 7.6 for details).

• Global land carbon stock: The global land stock data is annual from 1982 to
2015. The series for ωlanτ is then constructed from a benchmark value set at
FAO Forest Carbon stock in the base year 1990. Additions and subtractions
from the base year are then determined annually by land emissions (land use
− land sink) series from GCP 2018 (the same source used for slant ), dating back
to 1982. Net land emissions are subtracted forward and added backward from
the base year to obtain an annual series from 1982 to 2015. The annual data
is used for constructing the 5 year rolling aggregate s̃lanτ , ωlanτ−5 land sink rate as
τ varies annually from 1990-2015.19

• Country land carbon stocks: FAOSTAT contains data on Forest Carbon stock in
living (above and below ground) biomass for each country and derived from the
FAO Forest Resource Assessments (FAO FRA). The data measures only living
biomass in forests. See http://www.fao.org/faostat/en/#data.20 FAOSTAT
data is updated at quinquennial intervals from 1990 to 2015. The annual data
in the interim years reported by FAOSTAT is interpolated. Interpolated is not
used in our study.

• Country land sinks: The model posits absorption efficiency per unit land carbon
biomass to be identical across all country’s stocks, global land sink data is used
to compute country-specific sinks per unit carbon biomass. Specifically, for

quinquennial dates t,
s̃lanit

ωlan
it−5

=
s̃lant

ωlan
it−5

. With the data on land stocks and on the

global sinks, the country specific land sink s̃lanit is constructed.

• Global atmospheric GHG stock: Annual data on global GHG atmospheric
(CO2e) stocks gt from 1982 to 2016 are taken from NOAA Earth Systems

19The FAO series “forest carbon stocks” is inadequate. It interpolates between five year periods
from 1990 to 2015 and so has six distinct data points. The constructed series by contrast is annual
data from 1982-2015.

20Data on soils, leaf litter is found in FAO’s Global Forest Resource Assessment 2015 for the
single year 2015. Data on biomass on agricultural land is found in Zomer et al. (2016) for the years
2000 and 2010. Forest biomass is significantly larger than agricultural biomass in most countries.
In 2010 in the U.S. the agricultural carbon stock is 9.5% of the total. In Brazil, 11.5%. In India,
however, agricultural biomass is 41%. Agricultural carbon stock is excluded since data from Zomer
et al. (2016) only covers two years, 2000 and 2010. In the U.S. agricultural stock was measured by
Zomer to be 6.34 GtCO2e in 2000 and 6.62 Gt CO2e in 2010. Forestry stock in those two years
measured measured 57.66 and 62.64 in those years, resp. Hence agricultural stock comprised 10%
and 9.5% of the total carbon stocks in those years.

47



Research Laboratory. The NOAA report is a time series of atmospheric CO2e
levels from the Moana Loa Observatory. Data is expressed in parts per million
by volume (ppm). To convert from ppm to gigatonne of carbon, the conversion
tables of the Carbon Dioxide Information Analysis Center advise that 1 part
per million of atmospheric CO2e is equivalent to 7.81 Gt CO2e. The GHG con-
centrations include non-carbon GHGs contributing to temperature rises that
determine land sink absorption rate. The index t is over quinquennial dates.

• Country fossil fuel emissions: Annual data on fossil fuel consumption cfosi τ for
each country is from the CAIT Climate Data Explorer, 2017, the database pro-
vided by the World Resources Institute, http://cait.wri.org/historical. From
this data we construct five year flows for our estimation: c̃fosit is the five year
sum: c̃fosit =

∑4
j=0 c

fos
i, τ−j.

• Country output and labor: Annual GDP yi τ and labor Li τ series are taken
from the World Bank database. GDP is in 2011 PPP constant dollars. From
this data we construct five year flows for output: ỹit =

∑4
j=0 yi, τ−j. Labor is

a stock variable and so variable and so Lit is the labor force at quinquennial
date t.

• Country capital-emissions ratio: The capital-emissions ratio Hit is constructed
from Kt and c̃fosit . Annual data on country capital stock Kit comes from
the Penn World Tables (PWT) 9.1. We use stocks at quinquennial dates,
1990,1995, etc. We use stocks at quinquennial dates, 1990,1995, etc., and cur-
rent value PPP in constant 2011 dollars. Kit is divided by c̃fosit , five year flow
of emissions from country i ending in quinquennial date t. The source for c̃fosit

is given above.

7.5 Output Estimation Details and Robustness Checks

The derivation of the estimating equation in Appendix 7.2 produces the estimating
equation (25). Estimation of the reduced production equation is in OLS with country
fixed effects, and pooled within each country cluster. The constant is the value of
country-fixed dummy. The remaining coefficients can be expressed as Bks , γks , ζks ,
and ηks correspond to the cluster ks in the clustering/partitioning strategy s.

All told, we estimate results for eight clustering strategies: In order they are:
(i) Human Development Index (HDI). Here, k ranges over four clusters are High,
Medium High, Medium Low, and Low development groups as defined by the World
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Table 6: Policy-Adjusted Elasticities by HDI without Capital-Emissions Variable.

Dependent Variable - Log GDP
Medium Medium

Coefficients High High Low Low All

B Carbon Stock 0.767∗∗∗ 0.833∗∗∗ -0.012 0.055 0.372∗∗∗

(0.120) (0.162) (0.163) (0.125) (0.073)
γ Fossil Fuel 0.126 1.120∗∗∗ 1.065∗∗∗ 0.903∗∗∗ 0.960∗∗∗

(0.135) (0.117) (0.112) (0.124) (0.064)
η Labor Force 0.526∗∗∗ 0.395∗∗∗ 0.684∗∗∗ 0.797∗∗∗ 0.616∗∗∗

(0.117) (0.149) (0.147) (0.149) (0.072)

Observations 184 176 144 132 636
R2 0.995 0.995 0.996 0.993 0.995
F Statistic 550.4 589.9 644.1 415.7 643.8

Includes Country-Fixed Effects. Standard errors in parentheses. Symbols *, **, and *** indicate statistically
significant at the 10%, 5%, and 1% levels, respectively. Based on Human Development Index (HDI), U.N.
Development Programme. #Observations = # countries in cluster × 5 quinquennial time periods, 1995-2015.

Bank HDI. (ii) Global sample. There is a single k containing all 152 countries; (iii)
Binary HDI - binary partition where k groups High together with Medium High, and
Low together with Medium Lowq development. (iv) OECD Membership - binary
partition where k ranges over two groupings, OECD countries and all others; (v)
Top 30 GDP countries - binary partition where k ranges over “in” and “out” of the
top 30; (vi) Top 30 Emitters - binary partition where k ranges over “in” and “out” of
the top group; (vii) Top 35 most forested countries - binary partition where k ranges
over “in” and “out” of the top group; (viii) Geographic cluster with six groupings:
North America (excluding Mexico), Central and South America (including Mexico),
Europe, Asia, Oceana, and Africa.

The paper focusses on (i) the HDI and (ii) global cluster. Results for these are
reported in Table 2 in Section 4.3. Results of the other six strategies are reported in
an external, online appendix. All data, including membership list for each cluster in
each of the 8 strategies is available upon request.

In addition, we sought to test for omitted variables by considering alternative
specifications that include or exclude key time-trending variables, namely the capital-
emissions variable. Table 6 provides estimates for a model that excludes the capital-
emissions ratio. Table 7 includes an explicit time trend that substitutes for the
capital-emissions variable.

49

http://hdr.undp.org/en/composite/HDI
http://hdr.undp.org/en/composite/HDI
https://drive.google.com/file/d/163nlb5ijIeHbZ2e_xcTigNCMQ7db04_y/view?usp=sharing


Table 7: Policy-Adjusted Elasticities by HDI, substituting Time Trend for
Capital-Emissions variable

Dependent Variable - Log GDP
Medium Medium

Coefficients High High Low Low All

B Carbon Stock 0.157∗∗ 0.340∗∗∗ 0.088 0.075 0.092∗∗

(0.078) (0.139) (0.144) (0.118) (0.055)
γ Fossil Fuel 0.514∗∗∗ 0.597∗∗∗ 0.845∗∗∗ 0.737∗∗∗ 0.736∗∗∗

(0.081) (0.109) (0.105) (0.126) (0.048)
Time Trend 0.025∗∗∗ 0.030∗∗∗ 0.028∗∗∗ 0.018∗∗∗ 0.028∗∗∗

(0.002) (0.003) (0.005) (0.005) (0.001)
η Labor Force -0.077 -0.101 -0.014 0.351∗∗ -0.074

(0.076) (0.130) (0.178) (0.188) (0.062)

Observations 184 168 136 120 608
R2 0.998 0.997 0.997 0.994 0.998
F Statistic 1631.5 929.9 815.0 454.3 1213.3

Includes Country-Fixed Effects. Time trend bt substituting for Capital-emissions ratio Hit in Eq. (25).
Standard errors in parentheses. Symbols *, **, and *** indicate statistically significant at the 10%, 5%, and 1%
levels, respectively. Based on Human Development Index (HDI), U.N. Development Programme. #Observations
= # countries in cluster × 4 lagged quinquennial time periods up to 2015.
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7.6 Land Sink Estimation

Restricting attention to the quinquennial periods from 1990 to 2015, a reasonable
sample size is obtained by estimating the quinquennial flows annually since 1982.
The annual 5-year rolling aggregate for global land sink is defined as

s̃lanτ =
4∑
j=0

slanτ−j (52)

for τ annual. In addition,

ρ̃lanτ =
s̃lanτ
ωlanτ−5

(53)

which is assumed identical across countries. In words, ρ̃lanτ is the quinquennial ab-
sorption rate based on the land sink summed over the five year period up to and
including annual date τ . We estimate

log(ρ̃τ + 1) = π0 + π1gτ−5 + π2g
2
τ−5 + ντ (54)

where τ is the standard period length of a year, and we assume E[ντ |gτ−5] = 0. The
equation system is a rolling aggregate of 5 year flows and end-of-period stocks for
each period τ where τ varies yearly from 1987-2016, and the data series for all stocks
start in 1982.21

7.7 Projected Data and Simulation Details

The paths for {ỹit} and {ωlanit } are simulated for t = 2020, 2025, 2030, . . . , 2100 under
four RCP scenarios, each corresponding to Global Radiative Forcing levels 2.5, 4.5,
6.0, and 8.5, respectively, in the year 2100.

7.7.1 Parameter Values from the Model

Parameter values used in the simulation are the estimated values B̂, γ̂, ζ̂, η̂, and the
fixed-effects constants for countries in a given cluster, and π̂0, π̂1, and π̂2 from the
land sink absorption equation.

21The rolling aggregate structure induces serial correlation in errors so that OLS will generally
be inefficient but unbiased. With additional assumptions on the covariance matrix, (54) can be
re-estimated by GLS.
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7.7.2 Projected GHG Series {gt, RCP}

The source for GHG Series {gt, RCP} the database for the Representative Concen-
tration Pathways (RCPs) housed at the International Institute for Applied Systems
Analysis (IIASA), accessed 2-20-2019. IIASA provides data for the four main RCP
scenarios. Each scenario is produced by a distinct modeling group. The RCPs
aggregate at the regional/development level, dividing countries according to five cat-
egories: the OECD 90 (includes the expanded list of OECD countries, the reforming
economies (mostly Eastern Europe), Asia, Middle East and Africa, and Latin Amer-
ica. According the IIASA,

“The RCPs, which replace and extend the scenarios used in earlier IPCC
assessments [prior to AR5], are compatible with the full range of stabiliza-
tion, mitigation, and baseline emission scenarios available in the current
scientific literature.”

The model assumptions are outlined as follows.

• RCP 2.6: Stipulates peak radiative forcing at ≈ 3W/m2 before declining to
2.6W/m2 by 2100. RCP 2.6 represents mitigation scenarios with full from all
countries to limit the increase of global mean temperature to 2◦C. It forecasts
negative energy use emissions growth in the second half of the 21st century due
to a low carbon factor (carbon per energy unit), low energy intensity (energy
use per dollar income) and low population growth. The economic part assumes
that market share of a certain technology or fuel type depends on costs relative
to competing technologies. Reference: van Vuuren et al. (2006, 2007).

• RCP 4.5: Stabilizes radiative forcing at 4.5W/m2 in 2100 without ever exceed-
ing that value (no overshooting). The economic model is a cost-minimizing
policy pathway that reaches the target radiative forcing. The cost-minimizing
policy drives changes in the energy system, including shifts to electricity, to
lower emissions energy technologies and to the deployment of carbon capture
and geologic storage technology. Emissions pricing also applies to land use
emissions; as a result, forest lands expand from their present day extent. Ref-
erence: Clarke et al. (2007) (Mini-CAM), Smith and Wigley (2006), and Wise
et al. (2009).

• RCP 6.0. Stabilizes radiative forcing at 6.0W/m2 by 2100, without overshoot-
ing. It uses AIM/CGE which models a disaggregated energy system with both
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supply and demand sides. The pathway is achieved in a general equilibrium
model with non-forward-looking agents, and with technology-explicit modules
in power sectors. Source: Fujino et al. (2006) and Hijioka et al. (2008).

• RCP 8.5. Stipulates a rising radiative forcing pathway leading to 8.5W/m2

in 2100. RCP 8.5 uses the IAM, MESSAGE and forecasts higher carbon fac-
tor, energy intensity, and population growth. The economic model consists
of forward looking, representative-agent optimization to obtain consumption,
savings, and investment. Source: Riahi and Nakicenovic (2007).

Notes. Various disclaimers on the IIASA site note RCPs are “not new, fully inte-
grated scenarios (i.e., they are not a complete package of socioeconomic, emissions,
and climate projections).” and “do not represent specific futures with respect to
climate policy action (or no action) or technological, economic, or political viability
of specific future pathways or climates.” (Characteristics and guidance, IIASA.

7.7.3 Projected Country Land Carbon Stocks ωlanitRCP

Projected country land carbon stocks from 2020-2100 are constructed from RCP con-
centrations data, HDI parameter estimates from Table 2, and equilibrium conditions
as follows.

Model Calibrated Land Sink Absorption Projections ̂̃ρt,RCP Let

log(̂̃ρt,RCP + 1) = π̂0 + π̂1gt−5,RCP + π̂2g
2
t−5,RCP (55)

be the predicted value of the log of the return to land sink absorption under the RCP
forecast {gt,RCP} and estimates π̂0, π̂1, and π̂2 of the land sink absorption equation.

Calculation of Equilibrium Law of Motion for Land Carbon. Estimate a parameter,
in-sample, from the law of motion of land under equilibrium land policy. Combining
the land stock law of motion in with equilibrium land use policies, one obtains

ωlanit = ωlanit−5 − c̃∗ lanit (ωlanit−5) + r̃∗ lanit (ωlanit−5) + s̃lanit
= Di

(
2ωlani t−5 + s̃lanit

)
= Diω

lan
i t−5 (2 + ρ̃t)

(56)

where Di ≡ 1 − (1−δ)(αi+θi)
αi+βi+θi

is the model-generated adjustment factor. This is inde-

pendent of t. Equation (56) describes the theoretical carbon stock dynamics under
equilibrium land use. The evolution of ωlanit depends on the land carbon adjustment
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factor Di derived from land use. The empirical adjustment factor Dit from sample
data is

Dit ≡
ωlanit

ωlani t−5

(
2 + ̂̃ρt) . (57)

which, unlike the model generated parameter, will generally depend on t due to
shocks.

Now, average these empirical adjustment factor over four time periods, 2000,
2005, 2010, 2015, and over all countries in a given cluster k, using HDI as our
partition. Thus average adjustment factor Dk cluster k is computed as:

Dk ≡
1

4×#{ i in cluster k }

2015∑
t∈2000

∑
i∈cluster k

Dit (58)

The computations of these average adjustment factors across HDI clusters are dis-
played in Table 8.

Table 8: Mean Adjustment Factors under equilibrium Land Policies.

High Med High Med Low Low
HDI HDI HDI HDI

Adjustment Factor Dk 0.5196 0.5062 0.4816 0.4727
(0.0477) (0.0604) (0.0368) (0.0598)

Standard deviations (not standard errors) in parentheses.

Equation for Projected Land Stocks. Generate the RCP forecasted series {ωlanit,RCP}
recursively using the equation

ωlanit,RCP = Dkω
lan
it−5,RCP [2 + ̂̃ρt,RCP ] (59)

for country i in cluster k under scenario RCP starting from t− 5 = 2015, with each
t representing a quinquennial time period.

7.7.4 Projected Country Fossil Fuel Emissions c̃fosit, RCP

There are four distinct series each based in one of the four RCPs (see sources for
each RCP). The construction of c̃fosit, RCP is done by estimating the decadal percentage
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variation of GHG emissions, excluding LUCF, for each region in each RCP. These
growth rates are then attributed to each country within that region. To account
for the different GHGs we convert each gas into CO2e units using standard conver-
sion factors from global warming potential as specified in the IPCC 5th Assessment
Report.

The equation below for the change ∆ in fossil fuel emissions describes which gases
are included. For region j we define

∆j,t,RCP =

CO2 fossil fuelj,t,RCP +

total CH4− (CH4 from grassland and forest burn)︸ ︷︷ ︸
LUCF


j,t,RCP

+

other GHGsj,t,RCP
(60)

where all emissions are in CO2e.

Then the c̃fosijt,RCP of the country i that belong to the region j under the RCP,
when t ∈ {2020, 2030, 2040, . . . , 2100} is given by:

c̃fosi,j,t+10,RCP = c̃fosijt,RCP

∆j,t+10,RCP −∆j,t,RCP

∆j,t,RCP

Then for mid-decade dates t ∈ {2025, 2035, 2045, . . . , 2095} the projection for
fossil fuel is given by:

c̃fosit,RCP =
1

2
c̃fosi t−5, RCP +

1

2
c̃fosit+5,RCP .

7.7.5 Projected Country Capital-emissions ratios Hit, RCP

We construct a forecasted series {Hit, RCP}, for t = 2020, 20205, . . . , 2100 across the
four RCP scenarios. Dropping the RCP designation in the notation, we construct
paths assuming a fixed quinquennial rate of improvement,

Hi t+1 = (1 + h)Hit (61)

We impute a value of h that will vary across the four RCPs. The variable h will be
imputed from RCP assumptions.
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Decomposition and Kaya Identity. The decomposition of Hit is

Hit =
Kit

cfosit

=
Kit

Eit
× Eit

cfosit

(62)

where Eit is the total energy usage (in GJ units) by country i during quinquennial
time period up to and including date t.

Define zk, zf by

Ki t+1

Ei t+1

= (1 + zk)
Kit

Eit
Ei t+1

cfosi t+1

= (1 + zf )
Eit

cfosit

.
(63)

We obtain

(1 + h) = (1 + zk)(1 + zf ) (64)

To complete the construction, we derive values of zk and zf from the RCP assump-
tions. RCPs make assumptions using the Kaya Identity,

cfosit = Lit ×
yit
Lit︸︷︷︸

per capita GDP

× Eit
yit︸︷︷︸

energy intensity

× cfosit

Eit︸︷︷︸
carbon factor

Each RCP makes assumptions about projected energy intensity (EI) Eit

yit
, and carbon

factor (CF)
cfosit

Eit
. Notice that the second equation in (63) describes the evolution of

the inverse carbon factor (ICF), Eit

cfosit

.

Calibrated Values. Now let xe and xf denote the proportional reductions in EI and
CF, respectively, over a quinquennial (5yr) time period. Formally, these are defined
by

Ei t+1

yi t+1

= (1− xe)
Eit
yit

cfosi t+1

Ei t+1

= (1− xf )
cfosit

Eit

(65)

for quinquennial dates t, where flows are five year sums. We approximate the average
quinquennial improvements xe and xf assumed in each RCP from van Vuuren (2011,
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Table 9: Rate Reductions in IE and CF

Rate xe of reduction in IE (5 yr) Rate xf of reduction in CF (5yr)
RCP 2.6 0.0670 0.1684
RCP 4.5 0.0635 0.0620
RCP 6.0 0.0607 0.0059
RCP 8.5 0.0107 0.0081

Table 10: Rate Increase in ICF over all RCPs

Rate zf of increase in ICF (5yr)
RCP 2.6 0.2025
RCP 4.5 0.0661
RCP 6.0 0.0059
RCP 8.5 0.0082

Fig. 7). The values are reported in Table 9. The values in Table 9 are found by
computing the % change over each quinquennial period needed to obtain the net
change over the entire period from 2000 to 2100 as described in van Vuuren (2011).22

Note a proportional decrease of xf in the carbon factor corresponds to a propor-
tional increase zf =

xf
1−xf

in the inverse carbon factor. This formula is utilizes the

values in Table 9 to produce Table 10.

The remaining task is to find/approximate zk. Using the definitions in (63) and
(65) we obtain

Ki t+1−Kit

Kit

Ei t+1−Eit

Eit

= 1 + zk
Ei t+1

Ei t+1 − Eit
, and

cfosi t+1−c
fos
it

cfosit

Ei t+1−Eit

Eit

= 1− xf
Ei t+1

Ei t+1 − Eit
yi t+1−yit

yit
Ei t+1−Eit

Eit

= 1 + ze
Ei t+1

Ei t+1 − Eit

(66)

where ze = xe/(1− xe) is the proportional increase in inverse energy intensity yit
Eit

.

Taking the log of our initial output equation and differentiating with respect to

22See Riahi (2011) for alternative forecasts of CF and IE.
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Eit we obtain an instantaneous elasticity decomposition,

Eit∂yit
yit∂Eit

= ζi

(
Eit∂Kit

Kit∂Eit
− Eit∂c

fos
it

cfosit ∂Eit

)
+ γi

Eit∂c
fos
it

cfosit ∂Eit
(67)

The instantaneous elasticities in (67) approximate the discrete elasticities, i.e.,

Eit∂Kit

Kit∂Eit
≈

Ki t+1−Kit

Kit

Ei t+1−Eit

Eit

,

Eit∂c
fos
it

cfosit ∂Eit
≈

cfossi t+1−c
foss
it

cfossit

Ei t+1−Eit

Eit

and
Eit∂yit
yit∂Eit

≈
yi t+1−yit

yit
Ei t+1−Eit

Eit

Using these approximations, we substitute the discrete elasticities in (66) into the
instantaneous elasticity decomposition (67) to obtain

1+ze
Ei t+1

Ei t+1 − Eit
= ζi

(
zk

Ei t+1

Ei t+1 − Eit
+ xf

Ei t+1

Ei t+1 − Eit

)
+ γi

(
1− xf

Ei t+1

Ei t+1 − Eit

)
Solving for zk we obtain,

zk = (1− γi)
Ei t+1 − Eit
Ei t+1

+
ze
ζi

+
(γi − ζi)xf

ζi
(68)

Rewriting this equation,

zk = (1− γi)
(
Ei t+1 − Eit
Ei t+1

− xf
)

+
ze
ζi

+
(1− ζi)xf

ζi
(69)

For γi close to one and/or Ei t+1−Eit

Ei t+1
close to xf , we obtain

zk ≈
ze
ζi

+
(1− ζi)xf

ζi
(70)

Our estimates for γi are 0.769, 1.083, 1.103, 0.861 for High, Med High, Med Low
and Low Human Development clusters, resp. Our global estimate of γ is 0.992. All
are significant at 1% level. Thus, using the approximation in (70) with our estimates
for ζi across HDI clusters, we obtain
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Approximate rate zk of increase in Kit/c
fos
it

RCP/cluster H MH ML L
RCP 2.6 0.5090 1.6520 1.1359 1.2121
RCP 4.5 0.3040 0.9219 0.6428 0.6840
RCP 6.0 0.1930 0.5287 0.3770 0.3994
RCP 8.5 0.0638 0.1852 0.1304 0.1384

Table 3

Now use the values of Table 2 and Table 3 in order to compute h from equation
(64). Finally, we can compute the series {H̃it, RCP} from equation (61).

7.7.6 Projected Country Labor Lit

This section describes how 2020-2100 country labor force projections are constructed
from population and labor force participation forecasts. Source data for population
forecasts from U.N. World Population Prospects 2019. Source data for particpa-
tion rates come from the World Bank, World Development Indicators (see online
appendix).

Steps for constructing projected labor series. Projected labor force projection by
country at quinquennial date t in the time period 2020-2100 is given by:

( Country population in year t) × ( participation rate in corresponding year t).

We will be precise about how these are calculated.

First, projected population data is described in point (i) above. To be consistent with
labor participation data, population is aggregated into 4 age/sex categories, Male 15-
54, Male 65+, Female 15-64, Female 65+. In the formulae below, Popita will denote
the population of country i at quinquennial date t restricted to the age/sex category
a, where

a ∈ { Male 15-54, Male 65+, Female 15-64, Female 65+ }.

Second, projected participation rates are constructed as follows in the following steps.

1. Each country is classified into one of five categories: High income developed
(HID), High income emerging (HIE), upper middle income (UMI), lower middle
income (LMI), low income (LI).

2. The average participation rate of High income developed (HID) countries is
assumed to remain stationary after 2020. It remains at its 2020 average rate.
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3. With one caveat, each country in each classification is assumed to converge to
the stationary average HID rate. The date of convergence depends on classi-
fication. HID countries of course converge to the HID average in 2020. HIE
countries and UMI countries converge in 2040. LMI countries converge in 2070.
LI converge in 2100.

4. The caveat: any country with participation rate below the average HID rate
in 2020 remains stationary at its 2020 rate. Participation rates thus fall in
income/development.

5. Until its date of convergence, each country’s participation rate at quinquennial
date t is calculated as a linear interpolation between 2017 and its convergence
date. More precisely, the formula is as follows: Let yg be the year of converge
of a country in income g. Let P̄Ra denote the average participation rate of
age/sex group a across HID countries in the year 2020 (the stationary rate).
Then, the participation rate PRita for members of age/sex group a of country
i in group g at quinquennial date t such that 2017 < t < yg is

PRita = Pi, 2017, a + (P̄Ra − Pi, 2017, a)×
t− 2017

yg − 2017

6. Finally, we calculate labor force Lit of country i at quinquennial date t as

Lit =
∑
a

PRita × Popita
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