
DPSOLVE - A MATLAB Utility for Solving

Discrete-Time Bellman Equations

Mario J. Miranda
The Ohio State University

May 24, 2015

1 Introduction

dpsolve is a general discrete-time Bellman Equation solver included in the
CompEcon2015 Toolbox. The CompEcon Toolbox is a suite of MATLAB
utilities and demonstration programs originally developed to accompany the
textbook “Applied Computational Economics and Finance”, by Mario J.
Miranda and Paul L. Fackler, MIT Press, 2002. The Toolbox has been
continuously developed since its initial distribution, and the current version,
CompEcon2015, distributed by Mario Miranda, contains many advancements
that have been implemented over the past twelve years. The CompEcon2015
Toolbox is designed to run under MATLAB version 2013a. Its backward
compatibility with previous versions of MATLAB and previous versions of
the CompEcon Toolbox is neither guaranteed nor supported.

dpsolve may be used to solve finite- and infinite-horizon discrete-time
stochastic dynamic optimization models with discrete, continuous, or mixed
states and actions, provided there is at least one continuous state. The
continuous states and actions, in principle, may be of arbitrary dimension,
subject only to the practical constraints imposed by limitations in com-
puter memory and execution time. A related CompEcon2015 Toolbox utility
ddpsolve is designed to solve models with purely discrete states and actions.

This note documents the use the dpsolve utility distributed with the
CompEcon2015 Toolbox released April 5, 20151. The CompEcon2015 Tool-

1The CompEcon2015 Toolbox is freely available and may be obtained by emailing Mario

1



box contains, in addition to dpsolve, an array of supporting numerical utili-
ties, including nonlinear equation, nonlinear complementarity, numerical in-
tegration, numerical differentiation, and function approximation tools. The
Toolbox also includes higher level utilities designed for solving continuous-
time stochastic dynamic optimization and financial equilibrium models and
contains an extensive number of documented demonstration programs, most
of which are discussed in detail in Miranda and Fackler. The dpsolve utility
included in the CompEcon2015 Toolbox has greater functionality than the
one documented in the Miranda-Fackler Textbook and employs different in-
put and output protocols that render it backward incompatible with utilities
by that name distributed with earlier versions of the CompEcon Toolbox.

2 Infinite Horizon Models

dpsolve is designed to solve discrete-time infinite-horizon stochastic dynamic
optimization models with Bellman equations of the form

Vi(s) = max
j∈J,x∈Xij(s)

{fij(s, x) + δEǫ,i′|i,jVi′(gij(s, x, ǫ))}, s ∈ S, i ∈ I.(1)

Here,

• Vi(s), the value function, is a real-valued function that represents the
maximum attainable present value of current and expected future re-
wards, given the current discrete state i and continuous state s;

• s is a continuous state variable of dimension ds that can assume values
in a compact interval S ⊂ ℜds called the continuous state space;

• x is a continuous action variable of dimension dx that can assume values
in the interval Xij(s) = [aij(s), bij(s)] ⊂ ℜdx , whose lower and upper
bounds may depend on the current discrete state i, discrete action j,
and continuous state s;

• i is the index of a discrete state variable that can assume values in the
index set I = {1, 2, . . . , ni};

Miranda at miranda.4@osu.edu. Noncommercial and academic use of the CompEcon2015

Toolbox is unrestricted, subject only to the conditions that its use is explicitly cited in any

publication that employs it directly or indirectly and that any revision by a user of any

CompEcon2015 utility include an explicit notice of the revision and carry a name other

than that used in the CompEcon2015 Toolbox.

2



• j is the index of a discrete action variable that can assume values in
the index set J = {1, 2, . . . , nj};

• fij(s, x), the reward function, is a real-valued function of the current
states and actions; f is assumed to be twice differentiable in the con-
tinuous action x, if present;

• gij(s, x, ǫ), the state transition function, is a ds real-vector-valued func-
tion of the current states (i and s) and actions (j and x), and an
exogenous continuous state transition shock ǫ that is realized after the
current action is taken; g is assumed to be twice differentiable in the
continuous action x, if present;

• Eǫ,i′|i,j is the expectation with respect to the mutually independent
continuous state transition shock ǫ and discrete state next period i′,
conditional on the current discrete state i and discrete action j;

• ǫ is a de-dimensional i.i.d. random variable with known distribution
and i′ evolves as a controlled ni-state Markov chain with known time-
invariant transition probabilities qii′j = Pr(it+1 = i′|it = i, jt = j);
in the special case that the discrete state transitions are purely de-
terministic, we more succinctly write i′ = h(i, j) to indicate that the
discrete state will be i′ next period, given the current discrete state i

and current discrete action j.

• δ ∈ (0, 1) is a discount factor.

The Bellman equation may be written equivalently as

Vi(s) = max
j∈J

Vij(s) (2)

where

Vij(s) = max
x∈Xij(s)

{fij(s, x) + δEǫ,i′|i,jVi′(gij(s, x, ǫ))}, (3)

is the discrete-action-contingent value function, which gives the maximum
attainable present value of current and expected future rewards, given the
current state, contingent on taking the discrete action j ∈ J .

3



3 Solution Method

dpsolve employs the method of collocation to compute an approximation for
the value function that solves Bellman equation (1), then generates approx-
imate discrete-action-contingent value functions using (3). Specifically, the
value function is approximated using a linear combination of a user-specified
n-dimensional basis of real-valued functions defined on the continuous state
space S, φ : S 7→ ℜn:

Vi(s) ≈ ciφ(s). (4)

The 1 × n coefficient vectors ci, i ∈ I, are then fixed by requiring the value
function approximant to satisfy the Bellman equation, not at all possible
values of the continuous state s, but rather at n continuous state collocation

nodes s1, s2, . . . , sn ∈ S judiciously selected by the user. The collocation
strategy replaces the fundamentally difficult Bellman functional equation (1)
with a finite-dimensional nonlinear equation, known as the collocation equa-

tion, whose unknowns are the basis function coefficient vectors ci:

ciφ(sk) = max
j∈J,x∈Xij(sk)

{fij(sk, x) + δEǫ,i′|i,jci′φ(gij(sk, x, ǫ))}, (5)

i ∈ I and k = 1, 2, . . . , n.
The accuracy of the approximation afforded by the collocation method is

assessed by computing the Bellman equation residual function, the difference
between the left- and right-hand sides of the Bellman equation (1) over the
domain of continuous states s, when the value function or discrete-action-
contingent value functions are replaced by their approximants in the Bellman
equation. An exact solution to the Bellman equation will have a residual
that is zero everywhere. An approximate solution to the Bellman equation
will be zero only at the continuous state collocation nodes, by construction.
The accuracy of an approximate solution is thus measured by how much the
residual deviates from zero at non-collocation continuous state nodes.

dpsolve allows the user to choose between two classes of basis func-
tions, Chebychev orthogonal polynomials or polynomial splines (typically
cubic splines). dpsolve also allows the user to solve the nonlinear collocation
equation using either function iteration or Newton’s method (the default).
For further discussion on the collocation method, Chebychev polynomial and
polynomial spline function approximation, and nonlinear equation solution
methods, see Miranda and Fackler.

4



dpsolve, by default, will attempt to maximize the optimand embed-
ded in the Bellman equation with respect to the continuous action variable
x by solving the associated Karush-Kuhn-Tucker conditions as a nonlinear
complementarity problem using a derivative-based adapted Newton method.
Alternatively, the user may specify a finite set of possible values of x to
be considered, in which case dpsolve will search for the best value of x

within that set by completely enumerating all possible values of the opti-
mand; this derivative-free method produces less accurate results and will
require longer execution time, but generally will be more numerically stable
than the derivative-based method, and thus is useful if the derivative-based
method fails.

4 Usage

4.1 Calling Protocol

The calling protocol for dpsolve is

[c,sr,vr,xr,resid] = dpsolve(model,basis,v,x)

Input:

model structured array containing model specifications, further
discussed below basis n-dimensional

basis basis for real-valued functions defined on the continuous
state space S

v n×ni×nj array of initial guesses for the discrete-action-
contingent value function values at the n continuous state
collocation nodes, per discrete state and discrete action
(optional, default is array of zeros)

x n × dx × ni × nj array of initial guesses for the optimal
continuous actions at the n continuous state collocation
nodes, per discrete state and discrete action (optional,
default is array of zeros)

Output:

5



c n×ni vector of value function approximant basis function
coefficients, per discrete state

sr ns × ds refined array of continuous state nodes
vr ns×ni ×nj array of discrete-action-contingent values on

the refined array of continuous state nodes, per discrete
state and discrete action

xr ns×dx×ni×nj array of discrete-action-contingent opti-
mal continuous actions on the refined array of continuous
state nodes, per discrete state and discrete action

resid ns×ni array of Bellman equation residuals on the refined
array of continuous state nodes, per discrete state

If the residual is requested, dpsolve will return the values, optimal continu-
ous actions, and residuals on a refined array of ns equally-spaced continuous
state nodes. The degree of refinement is governed by nr, an optional param-
eter with default value of 10 that may be set by the user using optset (see
below). If nr > 0, the refined continuous state array is created by forming
the Cartesian product of equally-spaced coordinates along each dimension,
with nr times the number of coordinates possessed by the continuous state
collocation array along each dimension. If nr = 0, dpsolve will return the
values, optimal continuous actions, and residuals on the original array of
continuous state collocation nodes. On output, dpsolve eliminates the sin-
gleton dimensions of c, vr, xr, and resid to facilitate analysis in the calling
program.

4.2 Model Structure

The user specifies the model to be solved via a structured array model and
a user-coded function file further discussed below. The structured array
model contains different fields that specify essential features of the model to
be solved. These fields, with default values for optional fields in parentheses,
are

6



horizon time horizon (infinite)
func name of function file (required)
params model parameters required by function file (empty)
discount discount factor (required)
ds dimension ds of the continuous state s (1)
dx dimension dx of the continuous action x (1)
ni number ni of discrete states i (no discrete states)
nj number nj of discrete actions j (no discrete actions)
e ne × de array of discretized continuous state transition

shocks (0)
w ne × 1 vector of discretized continuous state transition

shock probabilities (1)
q ni × ni × nj array of stochastic discrete state transition

probabilities (empty)
h nj × ni array of deterministic discrete state transitions

(empty)
X nx × dx array of discretized continuous actions (empty)

Usage notes:

• It is assumed that the continuous state transition shock ǫ, if itself con-
tinuous, is replaced prior to creating model by a discrete random vari-
able of dimension de that assumes ne distinct values using some appro-
priate quadrature scheme.

• If X is nonempty, then dpsolve will maximize the optimand embedded
in Bellman’s equation by searching exclusively among the values con-
tained in the nx×dx array X; otherwise, it will maximize the optimand
by solving the Karush-Kuhn-Tucker conditions as a nonlinear comple-
mentarity problem using a derivative-based adapted Newton method.

• The user should specify either the stochastic discrete state transition
probabilities q or the deterministic state transitions h, but not both. If
both are specified, the latter is ignored. If neither is specified, dpsolve
uses the default h(j, i) = j.

4.3 Function File

The user-coded function file, which we shall generically refer to as func,
evaluates the reward function and the continuous state transition function

7



at ns continuous state nodes, and, if needed, the bounds on the continuous
action and the first and second derivatives of the reward and continuous state
transition functions with respect to the continuous action. The function file
is not designed to be called directly by the user. It is intended primarily
for use by dpsolve and thus must be coded to precise input and output
specifications.

The function file takes as input a flag that specifies the operations desired
by dpsolve, an ns×ds array of continuous state nodes s, an ns×dx array of
continuous actions x, an ns × 1 or 1× 1 array of discrete state indices i, an
ns×1 or 1×1 array of discrete actions j, an ns×de array of continuous state
transition shocks e, and a list of optional function parameters. The output
generated depends on the model function being evaluated, as indicated by
flag.

If X is empty (the default) and dx > 0, then dpsolve will attempt to solve
the continuous action maximization problem embedded in Bellman equation
by solving the associated Karush-Kuhn-Tucker conditions as a nonlinear com-
plementarity problem. This will require repeated evaluation of the optimand
and its first and second derivatives with respect to continuous action x. In
this case, the function file takes the form (user-supplied input in brackets):

function [out1,out2,out3] = func(flag,s,x,i,j,e,<parameters>)

switch flag

case ’b’

out1 = <lower bounds on continuous action x>;

out2 = <upper bounds on continuous action x>;

case ’f’

out1 = <reward function f values>;

out2 = <first derivative of f with respect to x>;

out3 = <second derivative of f with respect to x>;

case ’g’

out1 = <continuous state transition function g values>;

out2 = <first derivative of g with respect to x>;

out3 = <second derivative of g with respect to x>;

end

Here, the lower and upper bounds on the continuous action x are ns × dx
arrays; the rewards, their first derivatives, and their second derivatives, are
ns × 1, ns × dx, and ns × dx × dx arrays, respectively; and the continu-
ous state transitions, their first derivatives, and their second derivatives, are

8



ns × ds, ns × ds × dx, and ns × ds × dx × dx, respectively. The parameter
list in the function definition line must be identical to the list in the field
model.parameters of the structured model array.

If X is a nonempty or dx = 0, then dpsolve uses derivative-free methods
to approximately maximize the optimand embedded in Bellman’s equation.
Specifically, it maximizes the optimand searching sequentially among the
values found in X for the highest value. In this case, the function file takes
the simpler form (user-supplied input in brackets):

function out = func(flag,s,x,i,j,e,<parameters>)

switch flag

case ’f’

out = <reward function f values>;

case ’g’

out = <continuous state transition function g values>;

end

Here, the rewards and continuous state transitions are ns × 1 and ns × ds
arrays, respectively. It is important to note that the reward function must
be set to negative infinity for infeasible values of the continuous action.

4.4 User Options

The utility dpsolve allows the user to set the following options using optset

(defaults in parentheses):

algorithm collocation equation solution algorithm, either Newton’s
method (‘newton’) or function iteration ‘funcit’; Newton
is default

ncpmethod nonlinear complementarity solution algorithm for contin-
uous action maximization problem embedded in Bellman
equation, either semi-smooth formulation (‘ssmooth’) or
min-max formulation ‘minmax’

maxit maximum number of iterations, collocation equation so-
lution algorithm (500)

maxitncp maximum number of iterations, nonlinear complementar-
ity solver (50)

tol convergence tolerance (square root of machine epsilon)
nr continuous state array refinement factor (10)

9



To override an option default, optset must be called from the main pro-
gram prior to execution of dpsolve as follows

optset(’dpsolve’,’<option name>’,<new option value>)

For example, to solve the collocation equation using function iteration instead
of Newton’s method, write

optset(’dpsolve’,’algorithm’,’funcit’)

and to increase the number of permissible of iterations to 1000, write

optset(’dpsolve’,’maxit’,1000)

5 Demonstration Programs

The CompEcon2015 Toolbox contains a variety of demonstration program
that illustrate the use of dpsolve. The demonstration programs can be found
in the directory CEdemos that accompanies the distribution of this file. The
names of the relevant demonstration programs take the form “demdpxx”
where “xx” is the number of the program, as indicated in the table below.
The table also specifies the dimension of the continuous state variable ds, the
dimension of the continuous action variable dx, the number of discrete states
ni, and the number of discrete actions nj .

10



Table 1: DPSOLVE Demonstration Programs

Number Title ds dx ni nj Horizon
00 Timber Harvesting Model (Simple) 1 0 0 2 Infinite
01 Timber Harvesting Model 1 0 0 2 Infinite
02 Asset Replacement Model 1 0 6 2 Infinite
03 Industry Entry-Exit Model 1 0 2 2 Infinite
04 Job Search Model 1 0 2 2 Infinite
05 American Option Pricing Model 1 0 2 2 Finite
06 Deterministic Economic Growth Model 1 1 0 0 Infinite
07 Stochastic Economic Growth Model 1 1 0 0 Infinite
08 Public Renewable Resource Model 1 1 0 0 Infinite
09 Private Non-Renewable Resource Model 1 1 0 0 Infinite
10 Water Resource Management Model 1 1 0 0 Infinite
11 Monetary Policy Model 2 1 0 0 Infinite
12 Production Management Model 2 1 0 0 Infinite
13 Inventory Management Model 2 2 0 0 Infinite
14 Livestock Feeding Model 1 1 0 0 Finite
15 Savings Transactions Costs Model 1 1 2 2 Infinite
16 Linear-Quadratic Model 3 2 0 0 Infinite
19 Credit with Strategic Default Model 1 1 4 2 Infinite
20 Lifecycle Consumption-Savings Model 1 1 0 0 Finite
21 Fertility-Savings Model 1 1 > 1 2 Finite

11


