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Abstract 
We illustrate the theoretical lower bounds to market concentration implied by an 
endogenous fixed cost (EFC) model with vertical and horizontal product differentiation and 
derive the theoretical lower bound to R&D concentration from the same model. Using data 
on field trial applications of genetically modified (GM) crops, we empirically estimate the 
lower bound to R&D concentration in the agricultural biotechnology sector. We identify the 
lower bound to concentration using exogenous variation in market size across time, as 
adoption rates of GM crops increase, and across agricultural regions. The results of the 
empirical estimations imply that the markets for GM corn, cotton, and soybean seeds are 
characterized by endogenous fixed costs associated with R&D investments. For the largest-
sized markets in GM corn and cotton seed, single firm concentration ratios range from 
approximately .35 to .44 whereas three firm concentration ratios are approximately .78 to 
.82. The concentration ratios for GM soybean seeds are significantly lower relative to corn 
and cotton, despite greater levels of product homogeneity in soybeans. Moreover, adjusting 
for firm consolidation via mergers and acquisitions does not significantly change the lower 
bound estimations for the largest-sized markets in corn or cotton for either one or three 
firm concentration, but does increase the predicted lower bound for GM soybean seed 
significantly. These results imply that concentration in intellectual property in soybean 
varieties is differentially effected by mergers and acquisitions relative to corn and cotton 
varieties. 
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I. Introduction 
 

 

Over the past three decades, the agricultural biotechnology sector has been characterized 

by rapid innovation, market consolidation, and a more exhaustive definition of property 

rights. Concentration has occurred in both firm and patent ownership with the six-firm 

concentration ratios in patents reaching approximately 50% in the U.S. and the U.K. 

(Harhoff, Régibeau, and Rockett, 2001) However, increased concentration has had 

ambiguous effects on R&D investment as the ratio of R&D expenditure to industry sales 

(71.4%) remains relatively large (Lavoie, 2004). Using data on field trial applications for 

genetically modified (GM) crops, we exploit exogenous variation in technology and market 

size across time and submarkets to analyze whether the agricultural biotechnology is 

characterized by a lower bound to concentration consistent with an endogenous fixed cost 

(EFC) framework.  

 We derive and empirically test a lower bound to R&D concentration upon the 

theoretical endogenous fixed cost (EFC) model of Sutton (1998). We first demonstrate the 

lower bounds to R&D concentration via an illustrative model and then characterize the 

empirical predictions from the formal model. We use data on R&D investments, in the form 

of field trial applications for genetically modified (GM) crops, to test for lower bounds to 

R&D concentration among agricultural biotechnology firms.  

 Prior to estimating the lower bound to R&D concentration for the agricultural 

biotechnology industry, we examine an illustrative model of endogenous fixed costs in an 

industry characterized by multiple submarkets. We then derive the theoretical lower 

bound to R&D concentration under both exogenous and endogenous fixed costs as implied 
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by Sutton’s (1998) EFC model in order to obtain the empirical predictions for testing for a 

lower bound to R&D concentration. Using cluster analysis, we define regional submarkets 

for each GM crop type (corn, cotton, and soybean) based upon observable data on farm 

characteristics and crop production practices at the state level. 

 Ultimately, this leads to a test of the hypothesis that the agricultural biotechnology 

sector is characterized by an EFC model through the examination of data on field trial 

applications for GM crop release. The Animal and Plant Health Inspection Service (APHIS) 

provides data on permit, notification, and petition applications for the importation, 

interstate movement, and release of genetically-modified organisms in the US for the years 

1985-2010. By classifying the permit data according to type, we obtain estimates of 

concentration in intellectual property within distinct submarkets as a measure of 

(intermediate) R&D concentration. We exploit variation along two dimensions: (i) 

geographically as adoption rates for GM crop varieties varies by state and agricultural 

region; and (ii) intertemporally as adoption rates for GM crops has been steadily increasing 

over time. Moreover, the strengthening of property rights over GM crops over the past 20 

years and increased incentives for farmers to plant corn seed, relative to soybean seed, 

arising from the subsidies to ethanol production serve as natural experiments and provide 

sources of exogenous variation in the market. We estimate the lower bounds to R&D 

concentration using a two-step procedure suggested by Smith (1994) in order to test 

whether the single firm R&D concentration ratios follow an extreme value distribution. 

 Results from the empirical estimations support the hypothesis that the agricultural 

biotechnology sector is characterized by endogenous fixed costs to R&D with the largest 
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effects within the GM corn and cotton seed markets. However, the estimation results also 

indicate that within the soybean seed markets, firm merger and acquisition activity has 

significantly increased the observed levels of concentration in intellectual property. These 

results jointly reveal a difficulty associated with examinations of the agricultural 

biotechnology sector; namely, the nature of technology competition implies a level of 

concentration is to be expected, but the level of merger and acquisition activity remains an 

important determinate into examinations of concentration in intellectual property. 

 Rapid technological innovation and observed firm consolidation has led to several 

empirical examinations of market structure in the agricultural biotechnology industry. 

Fulton and Giannakas (2001) find that the agricultural biotechnology sector has undergone 

a restructuring in the form of both horizontal and vertical integration over the past ten 

years. The industry attributes consistently identified by the literature and that factor into 

the proposed analysis include: (i) endogenous sunk costs in the form of expenditures on 

R&D that may create economies of scale and scope within firms1; (ii) seed and agricultural 

chemical technologies that potentially act as complements within firms and substitutes 

across firms; and (iii) property rights governing plant and seed varieties that have become 

more clearly defined since the 1970s. This proposed research extends the stylized facts for 

the agricultural biotechnology industry by identifying the relevance of sunk costs 

investments in R&D in shaping the observed concentration and distribution of firms. As 

Sheldon (2008) identifies, the presence of endogenous sunk costs in R&D expenditures, 

                                                 
1 In regards to economies of scale and/or economies of scope in agricultural biotechnology, Chen, Naseem, 
and Pray (2004) find evidence that supports economies of scope as well as internal and external spillover 
effects in R&D. However, they fail to find any conclusive results concerning economies of scale or correlation 
between the size of firms and the size of R&D in agricultural biotechnology. 
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high levels of market concentration, and high levels of R&D intensity in the agricultural 

biotechnology make this sector a likely candidate to be well-described by an EFC-type 

model such as that proposed by Sutton (1998).  

 In estimating an EFC-type model, this analysis extends the previous work by 

considering a more general framework in which concentration and innovation are jointly 

determined. Previously, Schimmelpfennig, Pray, and Brennan (2004) tested Schumpeterian 

hypotheses regarding the levels of industry concentration and innovation in biotechnology 

and found a negative and endogenous relationship between measures of industry 

concentration and R&D intensity. Additional stylized examinations of the agricultural 

biotechnology industry have identified an endogenous, cyclical relationship between 

industry concentration and R&D intensity (Oehmke, Wolf, and Raper, 2005) and 

categorized the endogenous relationship between firm innovation strategies, including the 

role of complementary intellectual assets, and industry consolidation characteristics 

(Kalaitzandonakes and Bjornson, 1997). As a more general model, this analysis embeds 

previous results that observe an endogenous relationship between R&D investments and 

industry concentration. Moreover, we incorporate exogenous variations in total market 

size for each crop type as well as technological innovations, including the development of 

second- and third-generation GM crops, and changes in consumer preferences over the 

relevant time frame to provide a richer analysis of industry configurations. Whereas 

previous examinations have focused upon identifying the endogenous relationship 

between R&D intensity and concentration in agricultural biotechnology, we determine 

whether (sunk) R&D investments drive this relationship. 
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A related vein of research has focused upon the significant levels of merger and 

acquisition activity that have historically been observed in the agricultural biotechnology 

industry. The explanations behind the high levels of activity have included the role of 

patent rights in biotechnology (Marco and Rausser, 2008), complementarities in 

intellectual property in biotechnology (Graff, Rausser, and Small, 2003; Goodhue, Rausser, 

Scotchmer, and Simon, 2002), and strategic interactions between firms (Johnson and 

Melkonyan, 2003). This analysis extends previous examinations into merger and 

acquisition activity in agricultural biotechnology in estimating whether this firm 

consolidation has had a significant impact upon the observed patterns of R&D 

concentration while abstaining from addressing the possible causal mechanisms behind 

the consolidation activity. 

 The EFC model employed in this framework has been utilized to empirically 

examine a variety of other industries including chemical manufacturing (Marin and Siotis, 

2007), supermarkets (Ellickson, 2007), banking (Dick, 2007), newspapers and restaurants 

(Berry and Waldfogel, 2003), and online book retailers (Latcovich and Smith, 2001). These 

previous analyses have focused upon examining the relationship between concentration, 

captured by the ratio of firm to industry sales, and investments in either capacity (Marin 

and Siotis, 2007), product quality (Ellickson, 2007; Berry and Waldfogel, 2003), or 

advertising (Latcovich and Smith, 2001). The model of endogenous market structure and 

R&D investment developed by Sutton (1998) predicts a lower bound to firm R&D intensity 

that is theoretically equivalent to the lower bound to firm concentration under significantly 

large markets. To our knowledge, ours is the first examination of a specific industry in the 
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context of firm-level investments in R&D, although the empirical analysis of Marin and 

Siotis (2007) of chemical manufacturers does differentiate between product markets 

characterized by high and low R&D intensities. Moreover, we contribute to the industrial 

organization literature by applying an EFC model to a previously unexamined industry as 

well as derive and estimate the lower bound to R&D concentration under endogenous fixed 

costs. 

 In light of the recent Justice Department announcement regarding its investigations 

into anticompetitive practices in agriculture2, this analysis is of interest to both regulators 

and policymakers concerned with the observed high levels of concentration in agricultural 

biotechnology. Specifically, if the agricultural biotechnology sector is characterized by 

endogenous fixed costs, the high levels of concentration, accompanied with high levels of 

innovative activity, are a natural outcome of technology competition and are not evidence 

of collusion among firms. However, the significant shift in the observed patterns of R&D 

concentration in cotton and soybean seed upon accounting for merger and acquisition 

activity imply that industry consolidation has increased concentration of intellectual 

property to levels greater than what is predicted under endogenous fixed costs alone.  

                                                 
2 Neuman, W. 2010. “Justice Dept. Tells Farmers It Will Press Agricultural Industry on Antitrust.” The New 
York Times, March 13, pp. 7. 
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II. What is Agricultural Biotechnology? 
 

 

Prior to examining market structure and innovation in the agricultural biotechnology 

sector, it is important to clearly define what we mean when we use the term “agricultural 

biotechnology”. Gaisford, et al. (2001) define biotechnology, in general terms, as “the use of 

information on genetically controlled traits, combined with the technical ability to alter the 

expression of those traits, to provide enhanced biological organisms, which allow mankind 

to lessen the constraints imposed by the natural environment.” For our purposes, we are 

interested in firms that develop genetically-modified organisms (GMOs) for 

commercialization purposes within agriculture and restrict ourselves primarily to 

discussion concerning genetically-modified (GM), or genetically-engineered (GE), crops. 

 Prior to the 1970s, the development of new plant varieties was largely limited to 

Mendelian-type genetics involving selective breeding within crop types and hybridization 

of characteristics to produce the desired traits. Generally, it was impossible to observe 

whether the crops successfully displayed the selected traits until they had reached 

maturity implying a considerable time investment with each successive round of 

experimentation. If successful, additional rounds of selective breeding were often required 

in order to ensure that the desired characteristics would be stably expressed in subsequent 

generations. This process is inherently uncertain as crop scientists and breeders rely upon 

“hit-and-miss” experimentation, implying that achieving the desired outcome might require 

a not insubstantial amount of time and resources.   
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 The expansion of cellular and molecular biology throughout the 1960s and 1970s, 

specifically the transplantation of genes between organisms by Cohen and Boyer in 1973, 

increased the ability of crop scientists to identify and isolate desired traits, modify the 

relevant genes, and to incorporate these traits into new crop varieties via transplantation 

with greater precision (Lavoie, 2004). These advances had two key implications for 

agricultural seed manufacturers and plant and animal scientists. First, the ability to identify 

and isolate the relevant genetic traits greatly facilitated the transference of desirable 

characteristics through selective breeding. Second, the ability to incorporate genetic 

material from one species into the DNA of another organism allowed for previously 

infeasible or inconceivable transfers of specific traits. Perhaps the most widely known 

example of this was the incorporation of a gene from the soil bacterium Bacillus 

thuringiensis (Bt) that produces the Bt toxin protein. This toxin is poisonous to a fraction of 

insects, including the corn borer, and acts as a “natural” insecticide. When the gene is 

incorporated into a plant variety, such as corn, cotton, and now soybeans, the plants are 

able to produce their own insecticides, thereby reducing the need for additional application 

of chemical insecticides. 

 GM crops are typically assigned into three broad classifications, termed 

“generations”, depending upon the traits that they display and who benefits from these 

technological advancements (i.e. farmers, consumers, or other firms). The first generation 

consists of crops that display cost- and/or risk-reducing traits that primarily benefit the 

farmers, but which also may have important environmental and consumer impacts via 

decreased application of agricultural chemicals. Specific examples of first generation crops 
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include herbicide tolerant varieties (i.e. Roundup Ready® crops), insect resistant varieties 

(i.e. Bt crops), or crop types that are particularly tolerant to environmental stresses 

including drought or flood (Fernandez-Cornejo and Caswell, 2006). Second generation 

crops, which are largely still in development, consist of crops whose final products will 

deliver some additional value-added benefits directly to consumers. Products derived from 

second generation crops might offer increased nutritional content or other characteristics 

that directly benefit the health of end consumers. The third generation classification 

captures biotechnology crops developed for pharmaceuticals, industrial inputs (i.e. 

specialized oils or fibers), or bio-based fuels. We focus almost exclusively upon crops 

within the “first generation” classification as these constitute the majority of all currently 

commercialized GM crops. However, our analysis is applicable to the biotechnology 

industry in a general sense to the extent that we identify how the industry has evolved in 

the past with implications for how market structure and innovation will evolve as 

subsequent generations of biotechnology are introduced.  
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III. Endogenous Market Structure and Innovation: The “Bounds” Approach 
 

 

An Illustrative Model 

 

We adapt the theoretical endogenous fixed cost model of market structure and sunk R&D 

investments developed by Sutton (1998) and empirically estimate the lower bounds to 

R&D concentration in agricultural biotechnology. The empirical specification that we adopt 

was developed in Sutton (1991) and has since been adapted and extended in Giorgetti 

(2003), Dick (2007), and Ellickson (2007). We illustrate that the characterization of a 

market into horizontally differentiated submarkets does not change the theoretical 

predictions for the lower bound to concentration in the largest submarket under 

endogenous fixed costs. Subsequently, we derive the theoretical lower bound to R&D 

concentration for endogenous and exogenous fixed cost industries and specify the 

empirically testable hypotheses. 

 The specification of the empirical model relies upon a set of assumptions regarding 

the nature of product differentiation in the agricultural biotechnology sector. First, we 

assume that there exist regional variations in the demand for specific seed traits, such as 

herbicide tolerance or insecticide resistance, and that these regional variations create 

geographically distinct submarkets. This assumption corresponds with the empirical 

findings of Stiegert, Shi, and Chavas (2011) of spatial price differentiation in GM corn. 

Secondly, we assume that farmers value higher quality products such that a firm competes 
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within each submarket primarily via vertically differentiating the quality of its seed traits. 

Thus, we estimate a model of vertical product differentiation in the agricultural 

biotechnology sector while accounting for horizontal differentiation via the definition of 

geographically distinct product submarkets. 

 In order to derive the empirical predictions for the lower bound to R&D 

concentration, we adapt the illustrative model developed by Sutton (1991). We assume 

that within a regional submarket  , there are    identical farmers that have a quality-

indexed demand function such that: 

                                                                                   

where   is some “outside” composite good (i.e. fertilizer, machinery, etc.) which is set as 

numeraire,   is the quantity of the “quality” good (i.e. seeds),   is the quality level 

associated with good   and preferences are captured by the parameter   . We assume a 

level of quality     such that     corresponds to a minimum level of quality in the 

market and all farmers prefer higher quality for a given set of prices. The farmer in 

submarket   maximizes across all quality goods such that: 

   
       

                

                      

                                                               

where    is the total income for the farmer in submarket  . Solving reveals that, 

independent of equilibrium prices or qualities, the farmer will spend a fraction    of her 

total income upon the quality good.  

 We consider a three stage game consisting of: (i) a market entry decision into some 

submarket  ; (ii) technology market competition in which firms make fixed R&D 
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investments in product quality; and (iii) product market competition in quantities. In the 

second stage, given decisions to enter in the first stage, firms choose the levels of quality 

    they offer by making deterministic fixed (sunk) R&D investments within each 

submarket. In the final stage, firms engage in Cournot competition over quantities in the 

product market with the set of product quality levels      taken as given. The farmer thus 

chooses the good that maximizes the quality-price ratio       such that all firms that have 

positive sales in equilibrium have proportionate quality-price ratios (i.e.       

          ).   

 In order to derive the profit function for firms, consider the case in which all firms in 

a submarket are symmetric (i.e.           ). It must be the case that the equilibrium level 

of prices     equals the share of expenditure over total industry output        such that: 

     
      

      
                                                                        

Now suppose a single firm   deviates from the symmetric equilibrium by offering a quality 

level     such that it faces a price     equal to: 

    
    

   
                                                                           

It follows that the equilibrium price     faced by all other firms can be expressed as:  

    
      

          
    
   

    

                                                           

where          is total industry output net the output of the deviating firm and     is the 

deviating firm output. Assuming that firms face a constant marginal cost   independent of 
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the level of quality offered, the profit functions for the deviating firm   and any non-

deviating firm   in submarket   can thus be expressed, respectively, as: 

                
    

   
 

      

         
    
   

   

                                   

and 

                  
      

         
    
   

   

                                            

Differentiating and solving for the equilibrium levels of quantity yields the following 

expressions for the quantity produced for the deviating firm   and        non-deviating 

firms as a function of quality levels     and      such that: 

   
           

    

   
                                                            

and 

    
      

 
 

 
    
   

       

    
    
   

        
                                                 

Substituting the expressions for the equilibrium levels of quantity     and     into the 

expressions for prices     and    , we derive the equilibrium prices for the deviating firm   

and        non-deviating firms such that: 

       
    

   
  

 

      
                                                         

and 
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Thus, the net final-stage profit for the deviating firm in submarket   can be expressed as: 

                       
 

 
    
   

  
 

      

 

 

                                

This profit function allows for the examination of the case where all firms enter with 

symmetric quality (i.e.        ) and earn final-stage profits independent of quality (i.e. 

   
      

  
 ) as well as the case in which firms make fixed (sunk) R&D investments in 

quality. Letting the total market size (i.e.       ) in submarket   be    and summing 

across all submarkets in which firm   is active (i.e    ), firm  ’s total profit    can be 

expressed as: 

         
 

 
    
   

  
 

      

 

 

   

                                                

Sutton (1998) proposes a specification for product quality given the possibility of 

economies of scope across R&D trajectories. If agricultural biotechnology firms develop 

seed varieties that share attribute traits in adjoining geographic submarkets, then such a 

specification could capture technology spillovers between submarkets. Therefore, the 

quality level offered by some firm   in submarket   can be expressed as a function of the 

competencies that the firm achieves along all research trajectories such that: 
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where     is the competency that firm   achieves in submarket   and         is a 

measure of economies of scope across competencies.  

 We assume a R&D cost function that consists of a minimum setup cost    associated 

with entry in each submarket and a variable component that is increasing in the level of 

competency  . Thus for a given geographic submarket   (i.e. research trajectory), firm   

chooses a competency     and incurs a sunk R&D cost        equal to: 

            
 

                                                                       

where   is the elasticity of the fixed cost schedule. We assume     such that R&D 

investment rises with quality at least as fast as profits for a given increase in quality. We 

obtain an expression for firm  ’s total R&D investment    by summing across geographic 

submarkets (i.e. research trajectories) such that:   

          
 

   

   

                                                              

where    corresponds to the total number of submarkets that firm   enters. 

 Given the expressions for firm profit      and firm R&D costs     , the firm’s payoff 

function (i.e. the profit function net of fixed R&D investments) for the second stage quality 

choice decision can be written as: 

       

 
 

 
     

 

 
    
   

  
 

      

 

 

       
 

   

 
 

 

   

                          

where firms take the number of entrants    in each submarket as given from the first-

stage entry decision. 
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 We assume that each submarket in which firms enter can support at least a single 

firm producing minimum quality such that: 

                                                                                    

Given that the assumption on the size of the market and minimum setup cost for entry 

holds, we identify two possible symmetric equilibrium outcomes by solving the quality 

choice condition in the second stage. The first case corresponds with a symmetric 

equilibrium in which all firms active firms in submarket   enter with minimum quality (i.e. 

        ) and incur only the minimum setup cost    such that: 

     

    
 
         

    

    
 
         

                                                    

Condition      is equivalent to the case of exogenous fixed costs in which all firms enter 

with minimum quality (i.e.             ).  

 We define symmetric free entry conditions for each submarket   such that firms 

enter in the first stage until additional entrants are unable to recoup their fixed R&D 

investments in the submarket such that:  

                          
 
                                                          

We now derive the number of firms   
   that enter in a symmetric equilibrium and incur 

only the R&D setup cost    by investing in the minimum competency level (     ) in 

submarket  . Therefore, the free entry condition      under exogenous fixed costs by can 

be expressed as: 
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Solving condition      explicitly for the equilibrium number of firms   
   yields: 

  
    

  
  

                                                                           

which depends upon the market size of submarket   (i.e. the number of consumers   , the 

proportion of income spent on the “quality” good   , and the income of consumers   ) 

and the minimum setup cost   .  

 If condition      does not hold, then the quality choice condition for a symmetric 

equilibrium in which all firms enter with quality greater than the minimum (i.e. 

            ) can be expressed as: 

     

    
 
         

    

    
 
         

                                                    

Condition      is the case in which firms make quality-enhancing investments in R&D such 

that fixed costs are endogenous. Expressing condition      explicitly yields: 

   
   

  
       

  
      

  
   

  
       

  
  

     

       
   

                               

Adding and subtracting 
    

   
  

       

  
  , we can express condition      as: 

     
  
   

  
       

  
     

  
   

  
       

  
  

   

 
 

 
     

   
  

Substituting equation      for     and adding and subtracting      yields: 
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Letting            and      
         

  
   and multiplying both sides by     yields: 

                      
    

                                                  
    

   

 
 

 
     

 
                             

Summing equation      across all     such that: 

                       
    

   

                                               
    

   

    
   

 
 

 
     

 
 
                          

Since we are summing across all submarkets in which firm   is active, equation      can be 

simplified such that: 

                        
                      

     

   

 
 

 
      

 

   

  

Collecting terms, simplifying, and substituting for    yields: 

  
         

  
  

   

 
 

 
      

 

   

                                                       

We state the free entry condition, as characterized by equation     , when firms enter 

symmetrically with competency       in submarket   explicitly as: 
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such that summing expression      across all submarkets in which some firm   is active 

(i.e.    ) yields: 

 
  
  

 

   

       
 

   

                                                                   

Dividing both sides of the quality choice condition      by both sides of the free entry 

condition      yields an expression for the equilibrium number of firms across submarkets 

such that: 

  
         

  
     

 
  
  

    

 
 

 
                                                            

Combining terms and rearranging yields: 

 
  
  

 
 
       

  
 

 

 
 

   

                                                           

Suppose the total market size    for each submarket are ranked from smallest to largest 

such that           . Then by summation by parts, equation      can be written as: 

 
       

  
 

 

 
  

  

  
 

 

   

   
  

  
  

                   

      
 

 

   

   

   

                        

Since  
  

  
 

 
    is equivalent to total firm profit, dividing equation      through by total profit 

obtains an expression in terms of the summation of the proportion    of total profit 

attributed to each submarket   such that:     
  

  
 

 
    Therefore, equation      can be 

written as: 



20 

 

 
       

  
 

 

 
      

                   

      
 

   

   

                                 

If fixed costs are exogenous, then the monotonocity of equation      implies that the 

number of firms that enter in equilibrium in each submarket maintains the same ordering. 

Thus,            and the second term in equation      is non-negative such that 

 
       

  
 

 

 
   . On the other hand, Sutton’s EFC model (1991; 1998) implies that the 

presence of endogenous sunk costs limits the equilibrium number of firms that can enter 

even as the market size becomes large. Therefore, for some critical value of market size    , 

industries switch from being characterized by exogenous fixed costs to endogenous fixed 

costs such that              . Provided that the number, and size, of submarkets 

characterized by endogenous fixed costs are greater than those characterized by 

exogenous fixed costs, the second term in equation      is non-positive such that 

 
       

  
 

 

 
   . Thus, if the largest submarket   is characterized by endogenous 

(exogenous) fixed costs, then solving  
   

     

  
  

 

 
    for   

  yields the least upper bound 

(greatest lower bound) to the number of firms that enter in equilibrium. 

 The number of firms entering under endogenous fixed costs   
   solves 

 
       

  
 

 

 
    which can be expressed equivalently as: 

  
     

 

 
                                                                    

The roots to the quadratic equation      are equal to: 
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Given the assumption on the cost elasticity parameter    , the smaller of the two roots is 

always less than one such that the equilibrium number of firms that enter under 

endogenous fixed costs equals: 

  
   

 

 
      

 

 
                                                            

Figure 1 illustrates the lower bound to concentration under exogenous (CEX) and 

endogenous (CEN) fixed costs for sets of parameter values       . As the R&D cost 

parameter   increases, the upper limit on the total number of firms that enter in 

equilibrium increases such that the lower bound to concentration CEN under endogenous 

fixed costs decreases. Moreover, as the minimum setup cost    increases, the total number 

of firms that enter in equilibrium decreases, hence shifting the lower bound to 

concentration CEX under exogenous fixed costs outward.  
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Figure 1: Equilibrium Concentration Levels and Market Size 

 

By equating the equilibrium number of firms from equations      and     , we determine 

the threshold value for the market size     whereby a submarket   changes from being 

characterized by exogenous fixed costs to endogenous fixed costs. Specifically, 

       
 

 
      

 

 
       

 

                                                 

The upshot from this analysis is that for sufficiently sized markets, the ability of firms to 

increase quality via fixed (sunk) R&D investments precludes additional entry by new firms 

such that existing firms capture further expansions of market size via quality escalation. 

Thus, even as the size of the market grows large (i.e.       ) firm concentration levels 

remain bounded away from perfectly competitive levels (i.e.     ).  

Figure 1: Illustrating equilibrium concentration and market size from the Cobb-Douglas 
demand example (under symmetric equilibrium and simultaneous entry). The R&D cost 
parameter β3>β2>β1 illustrates the greater lower bound under lower R&D costs relative to the 
lower bound under higher R&D costs. The minimum setup cost F3>F2>F1 illustrates the 
horizontal shift of firm entry associated with greater exogenous sunk costs. 
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A Lower Bound to R&D Concentration 

 

The illustrative model developed in the previous section relates the number of firms that 

enter in equilibrium, hence industry concentration, to total market size and the 

endogeneity or exogeneity of sunk R&D expenditures. Sutton (1998) finds that the lower 

bound to R&D intensity, measured as the ratio of firm R&D to firm sales, is equivalent to the 

lower bound to concentration as markets become large. However, he does not address the 

implications of the EFC model upon concentration of R&D within these industries, which 

remains as a separate and additional concern in discussions regarding mergers and 

acquisitions, as well as patent pools, in agricultural biotechnology (Moschini, 2010; Dillon 

and Hubbard, 2010; Moss, 2009). We draw upon the results of Sutton (1998) in order to 

determine the empirical predictions of the EFC model regarding R&D concentration, 

defined as firm R&D relative to industry R&D. The empirical predictions imply that: (i) the 

lower bound to R&D concentration is convergent in market size (i.e. the theoretical lower 

bound is not independent of the size of the market as is the case with sales concentration); 

and (ii) R&D concentration moves in an opposite direction from firm concentration with 

changes in market size such that larger markets are characterized by greater concentration 

in R&D.  
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 Drawing upon the non-convergence results (Theorems 3.1-3.5) of Sutton (1998), 

the lower bound to the single firm concentration ratio     for the quality-leading firm in 

submarket   can be stated as:  

    
   

  
                                                                         

where   is some constant for a given set of parameter values       and is independent of 

the size of the market in endogenous fixed cost industries. The value of alpha   depends 

upon industry technology, price competition, and consumer preferences and captures the 

extent that a firm can escalate quality via R&D investment and capture greater market 

share from rivals.  

 For simplicity of analysis, it will be beneficial to introduce notation for industry 

sales revenue and R&D expenditure. Following the notation for the sales revenue     and 

R&D expenditure     for some firm   in submarket  , we define total industry sales 

revenue    and R&D expenditure    in submarket   by summing across all firms such 

that            and           . Additionally, we define the degree of market 

segmentation (or product heterogeneity)          as the share of industry sales revenue 

in submarket   accounted for by the largest product category such that: 

      
 

   

  
                                                                         

where      corresponds with a submarket in which only a single product is offered. 

 Moreover, from Theorem 3.2 implies an equivalent expression for the lower bound 

to R&D-intensity     for the quality-leading firm such that: 
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Equation      implies that the R&D/sales ratio shares the same lower bound as the single 

firm concentration ratio as the size of the market becomes large (i.e.     ). Multiplying 

both sides of equation      by     yields: 

                     
   

  
                                                       

Dividing both sides of equation      by total industry sales revenue in submarket   yields: 

   
  

            
  

  
  

   

  
                                                      

However, free entry in equilibrium implies that total industry sales revenue    equals total 

industry R&D expenditure    such that equation      can be written as: 

   
  

            
  

  
  

   

  
                                                       

Defining the ratio of R&D concentration for the quality-leading firm as     
   

  
, 

substituting for condition      on the lower bound to the single-firm concentration ratio, 

and substituting observable market size    for profit    yields: 

              
          

  

  
                                                    

Equation      provides the empirically testable hypothesis for endogenous fixed costs 

relating the lower bound to concentration in R&D expenditure to market size, the minimum 

R&D setup cost, and the level of product heterogeneity. If sunk R&D costs are endogenous, 

there would be a nonlinear relationship between the degree of market segmentation 
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(product homogeneity)    and the concentration of R&D     for a given market. 

Moreover, equation      implies a lower bound to the ratio of R&D concentration that 

converges to some constant          
  as the size of the market becomes large. For finitely 

sized markets though, the lower bound to R&D concentration is increasing in market size 

such that R&D expenditures are less concentrated in smaller sized markets. 

 If the industry is instead characterized by exogenous fixed costs, then the ratio of 

R&D concentration in submarket   can be expressed as: 

    
   
  

 
  

  
                                                                       

For some minimum fixed setup cost   , concentration in R&D investments is decreasing in 

market size and approaches   as market size becomes large and, contrary to the case of 

endogenous fixed costs, the R&D concentration under exogenous fixed costs is greatest in 

small markets. Figure 2 illustrates the relationship between R&D concentration and market 

size for both endogenous and exogenous fixed cost industries. 

 Figure 2 compares the lower bounds to R&D concentration for industries 

characterized by low and high levels of product heterogeneity   for a range of   

parameters as market size   increases. If an industry is characterized by homogenous 

products (i.e. low  ), there is no range of   such that firms invest more in R&D in excess of 

the minimum setup cost associated with entry.  However, if an industry is characterized by 

differentiated products (i.e. high  ) and sufficiently large  , then there is an incentive for 

firms to escalate R&D investment to increase product quality such that R&D concentration 

remains bounded away from zero as market size increases. 
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Figure 2: Equilibrium R&D Concentration Levels and Market Size 

 

Empirical Specification 

 

Equations      and      lead directly to the empirically testable hypotheses for the lower 

bound to R&D concentration. Specifically, an industry characterized by endogenous fixed 

costs in R&D should exhibit a lower bound to R&D concentration that is non-decreasing in 

market size whereas R&D concentration in exogenous fixed cost industries is decreasing in 

market size. Sutton (1991) derives a formal test for the estimation of the lower bound to 

concentration in an industry, based upon Smith (1985, 1994), in which the concentration 

ratio is characterized by the (extreme value) Weibull distribution.  As Sutton (1991, 1998) 

identifies, it is necessary to transform the R&D concentration ratio    such that the 

Figure 2: Illustrating equilibrium R&D concentration levels and market size for industries with low (2.a) and high (2.b) 
levels of product heterogeneity. For homogenous product industries (low h), no value of α would permit endogenous 
fixed costs such that R&D concentration decreases with market size. For heterogeneous product industries (high h), 
provided  α is sufficiently large, R&D concentration will remain bounded away from zero as market size increases. 
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predicted concentration measures will lie between 0 and 1. Specifically, the    

concentration measure is transformed according to:3  

        
 

    
                                                                     

We follow the functional form suggested by Sutton for the lower bound estimation such 

that for some submarket  , the    concentration ratio is characterized by: 

    

  
 

      

 

           
                                                        

where the residuals   between the observed values of R&D concentration and the lower 

bound are distributed according the Weibull distribution such that: 

             
   

 
 
 

                                                      

on the domain    . The case of      corresponds to the two parameter Weibull 

distribution such that nonzero values of the shift parameter   represent horizontal shifts of 

the distribution. The shape parameter   corresponds to the degree of clustering of 

observations along the lower bound where as the scale parameter   captures the 

dispersion of the distribution.  

 To test for a lower bound to R&D concentration, it is equivalent to test whether the 

residuals fit a two or three parameter Weibull distribution, that is to test whether    . 

However, as Smith (1985) identifies, fitting equation      directly via maximum likelihood 

                                                 
3 As the transformed R&D concentration is undefined for values of      , we monotonically shift the R&D 
concentration data by -0.01 prior to the transformation.  
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estimation is problematic for shape parameter values    .4 Smith (1985, 1994) provides 

a two-step procedure for fitting the lower bound that is feasible over the entire range of 

shape parameter values.  

 Following the methodology of Giorgetti (2003), we first solve a linear programming 

problem using the simplex algorithm to obtain consistent estimators of         in which 

the fitted residuals are non-negative. Therefore,           solves: 

   
       

  
    

  
 

       

 

           
  

 

   

          
    

  
 

       

 

           
     

 

From the first step, we obtain parameter estimates for           fitted residual values    

which can be used to estimate the parameters of the Weibull distribution via maximum 

likelihood. Specifically, as there are   parameters to be estimated in the first stage, there 

will be     fitted residuals with positive values. By keeping only the fitted residuals with 

strictly greater than zero values, we maximize the log pseudo-likelihood function: 

   
       

     
 

 
  

   

 
 
   

      
   

 
 
 

  

   

   

 

with respect to         in order to test whether    , which is equivalent to testing the 

two parameter versus three parameter Weibull distribution via a likelihood ratio test.  If 

the three parameter Weibull cannot be rejected, then this implies the presence of a 

                                                 
4 Specifically, for      , the maximum for the likelihood function exists, but it does not have the same 
asymptotic properties and may not be unique. Moreover, for      , no local maximum of the likelihood 
function exists. 
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horizontal shift in the distribution corresponding to an industry in which R&D is an 

exogenously determined sunk cost. In all cases, the likelihood ratio test fails to reject that 

the data fits the restricted, two parameter model such that    . For each estimation, we 

report the likelihood ratio statistic which is distributed with a chi-squared distribution 

with one degree of freedom. Finally, we compute standard errors for the first-stage 

estimations via bootstrapping and standard errors for the second-stage estimations 

according to the asymptotic distributions defined in Smith (1994). 

 

 

IV. Data and Descriptive Statistics 
 

 

In order to estimate an endogenous fixed cost model a la Sutton (1991, 1998), it is 

necessary to have both firm-level sales data and total market size for each market that is 

representative of the entirety of the industry. Although such data are of limited availability 

for the agricultural biotechnology sector, estimation of the endogenous lower bound to 

R&D concentration in agricultural biotechnology according to the proposed model is 

feasible using publicly available data. The model specifically requires four types of data for 

each crop type: (i) firm-level data on R&D investment, (ii) industry-level data on (sub-) 

market size, (iii) industry-level data on product heterogeneity, and (iv) industry-level data 

on the minimum setup costs for each (sub-) market. Moreover, additional data on 



31 

 

agricultural characteristics at the state level are required in order to separate the 

agricultural biotechnology sector into distinct (sub-) markets for each crop type.  

 Sutton (1998) identifies the potential use of “natural experiments” in order to 

empirically identify the lower bound to concentration within a single industry. The natural 

experiments that allow for such an analysis occur when there is an exogenous shift in 

consumer preferences or an exogenous change in technology, although exogenous changes 

in market size also prove useful for analysis. For the empirical analysis of the agricultural 

biotechnology sector, we utilize two dimensions of variation in R&D investment and 

market size by estimating the lower bound across geographic submarkets as well as over 

time. In doing so, we are able to capitalize upon changes in consumer attitudes towards GM 

crops over time as well as advances in technology and/or regulation which decrease the 

fixed costs associated with R&D. Moreover, geographic and intertemporal variation in 

market size permits the theory to be tested across a variety of market sizes. Finally, we are 

able to utilize a “natural experiment”, in the form of differential changes in demand for corn 

(positive) and soybean (negative) seed in response to an exogenous increase in the 

incentives for farmers to grow corn crops for use in ethanol.  

 The ideal data for the analysis of an endogenous lower bound to R&D concentration 

would be R&D expenditures for each product line for every firm in an industry. Although 

data at this level of detail is unavailable for the agricultural biotechnology sector, there is 

publicly available data that captures proxies for R&D investment at the firm and product 

level in the form of patent and/or field trial applications for GM crops. However, data on 

crop patent applications is not available for the years after 2000 and therefore is less useful 
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for an estimation of lower bounds to concentration for an industry in which there has been 

considerable consolidation post-2000. Field trial application data are appropriate for the 

analysis as it captures an intermediate R&D process which is mandatory for firms that 

desire to bring a novel GM crop to market. 

 In accordance with the Federal Coordinated Framework for the Regulation of 

Biotechnology, the Animal and Plant Health Inspection Services (APHIS) regulates the 

release of any genetically engineered (GE) organism that potentially threatens the health of 

plant life. Specifically, prior to the release of any GE organism, the releasing agency, either 

firm or non-profit institution, must submit a permit application to the Biotechnology 

Regulatory Services (BRS). These Field Trial Applications are made publicly available by 

the BRS in a database that includes information on all permits, notification, and petition 

applications for the importation, interstate movement, and release of GE organisms in the 

US for the years 1985-2010. The database includes the institution applying for the permit, 

the status of the application, the plant (or “article”) type, the dates in which the application 

was received, granted, and applicable, the states in which the crops will be released, 

transferred to or originated from, and the crop phenotypes and genotypes. As of October 

2010, there are 33,440 permits or notifications of release included in the database for all 

types of crops. After restricting the sample to firms, by eliminating non-profit institutions, 

and permits or notification involving the release of GE crops, there are 9936 remaining 

observations in the database. 

 The National Agricultural Statistics Service (NASS), a division of the United States 

Department of Agriculture (USDA), conducts the annual June Agriculture Survey in order to 
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obtain estimates of farm acreage for a variety of crops, including corn, cotton, and 

soybeans. The NASS reports data on total amount of acreage, both planted and harvested, 

in an annual Acreage report that is made publicly available. Moreover, the Economic 

Research Service (ERS) also computes yearly seed costs in dollars per acre based upon 

survey data collected by the USDA in the crop-specific Agricultural Resource Management 

Surveys (ARMS). After adjusting for inflation, these seed costs are multiplied by the total 

acres planted for each crop type to arrive at total market size.  

 Since 2000, the June Agricultural Survey has also sampled farmers regarding the 

adoption of GM seed varieties for corn, cotton, and soybeans across a subsample of states.5 

Using this survey data, ERS computes and reports estimates for the extent of GM adoption. 

GM adoption rates are used to obtain total GM acreage planted, as well as total market size 

after multiplying by the inflation adjusted dollar cost of seed, to arrive at a measure of GM 

market size for the lower bound estimation. Figure 3 plots three-year average one firm 

concentration ratios and adoption rates for GM crops for each crop type from 1996-2010. 

The graph illustrates two important trends: (i) increasing rates of adoption of GM seed 

varieties across time; and (ii) single firm concentration ratios that initially increased and 

have remained consistently high across time.  

 Additionally, the rates of adoption for 2000-2010, as well as the estimates of GM 

adoption for the years 1996-1999 from Fernandez-Cornejo and McBride (2002), are used 

                                                 
5 NASS estimates that the states reported in the GM adoption tables account for 81-86% of all corn acres 
planted, 87-90% of all soybean acres planted, and 81-93% of all upland cotton acres planted. For states 
without an adoption estimate, overall US adoption estimates are used to compute the size of the GM market. 
Provided rates of adoption or total planted acreage are not significantly greater among these “marginal” 
states, this imputation will not bias the estimates.  
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to construct product heterogeneity indexes for each crop type that vary across time. By 

definition, the product heterogeneity index is meant to capture the percentage of industry 

sales of the largest product group. Therefore, we treat seed varieties as homogenous within 

product groups, defined as conventional, insect resistant (IR), herbicide tolerant (HT), and 

“stacked” varieties consisting of IR and HT traits, and equate the product heterogeneity 

index to the percentage of acres accounted for by the largest group.  

 

 

 
Figure 3: Single-Firm R&D Concentration Ratios and GM Adoption 

 

The final component required for the estimation of the lower bound to R&D concentration 

is the minimum setup cost associated with entry into the product market. We use data 

reported in the “National Plant Breeding Study” for 1994 and 2001 in order to obtain a 

proxy for the R&D setup cost for each crop type. The minimum setup cost is obtained by 

first summing the total number of public “scientist years” (SY), those reported by the State 
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Agricultural Experiment Stations (SAES) and the Agricultural Research Service (ARS), and 

divide this sum by the total number of projects reported for both agencies in order to 

obtain average SY for a single crop.6 Minimum setup costs are thus obtained by multiplying 

average SY by the private industry cost per SY ($148,000) and adjusting for inflation.7 

Table 3 reports summary statistics for field trial applications, crop acreage planted, seed 

costs, product heterogeneity, and minimum setup costs. 

  

Table 1: Lower Bound Estimation Data Descriptive Statistics 

 

 

                                                 
6 A “scientist year” is defined as “work done by a person who has responsibility for designing, planning, 
administering (managing), and conducting (a) plant breeding research, (b) germplasm enhancement, and (c) 
cultivar development in one year (i.e. 2080 hours).” 
7 Results of the lower bound estimations are robust to an alternate definition based upon public sector cost 
per SY ($296,750). 

Mean Std. Dev. Min. Max.

Field Trial Applications

Corn 318.86 166.46 3.00 606.00 6696.00

Cotton 41.13 23.63 1.00 91.00 946.00

Soybeans 78.32 55.94 4.00 194.00 1723.00

Total Acres Planted (000 acre)

Corn 79945.43 5176.88 71245.00 93600.00 1678854.00

Cotton 13434.61 1994.88 9149.50 16931.40 282126.90

Soybeans 69462.76 7287.88 57795.00 82018.00 1458718.00

Seed Costs ($/acre)

Corn 25.13 7.10 15.65 49.15 -

Cotton 25.46 15.63 7.24 79.55 -

Soybeans 18.34 6.99 7.79 37.28 -

Product Heterogeneity

Corn 0.69 0.24 0.35 1.00 -

Cotton 0.59 0.26 0.31 1.00 -

Soybeans 0.84 0.14 0.64 1.00 -

Minimum Setup Costs ($1000)

Corn 182536.55 27275.81 147843.26 220132.27 -

Cotton 182019.44 27434.03 147424.44 219508.67 -

Soybeans 282336.98 42553.92 228675.42 340487.88 -

Source: Author's estimates

Yearly

TotalVariable
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The observable data used in the cluster analysis are from the period prior to the 

widespread adoption of GM varieties (1990-1995) and covers agricultural production in all 

lower, contiguous 48 states (except Nevada), although the extent of coverage varies by crop 

and state.  The cluster analysis uses data (summarized in Table 4) that can be broadly 

classified into two types: (i) state level data that are constant across crops; and (ii) data 

that vary by state and crop level.  The state level data include location data (longitude and 

latitude measured at the state’s geometric center), climate data (mean monthly 

temperatures, mean monthly rainfall, and mean Palmer Drought Severity Index measured 

by the National Oceanic and Atmospheric Administration (NOAA) from 1971-2000), and 

public federal funding of agricultural R&D, including USDA and CSREES (NIFA) grants, 

reported by the Current Research Information System (CRIS) for the fiscal years 1990-

1995. The state/crop level data analyzed include farm characteristics for each crop variety 

(i.e. acres planted, number of farms, average farm size, number of farms participating in the 

retail market, total sales, and average sales per farm) that are reported by the USDA in the 

1987 and 1992 US Census of Agriculture. Additional data on the application of agricultural 

chemicals were collected by the USDA, NASS and ERS, and reported in the Agricultural 

Chemical Usage: Field Crop Summary for the years 1990-1995. 
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Table 2: Market Definition Data Descriptions 

 

 
 
V. The Market for Agricultural Biotechnology 
 

 

In estimating an EFC-type model for a single industry, an initial crucial step is the proper 

identification of the relevant product markets. The EFC model predicts an escalation of 

Data Description Years Source

Latitude State geographic centroid - MaxMind®

Longitude State geographic centroid - MaxMind®

Size Total area (000s  acres) -

2000 Census of Population 

and Housing

Temperature Monthly averages (°F) 1971-2000 NOAA

Rainfall Monthly averages (inches) 1971-2000 NOAA

Drought Likelihood Monthly averages (PDSI) 1971-2001 NOAA

R&D

Total public funds for agricultural R&D 

(1990 $000s)
1990-1995 CRIS

Cropland Total cropland area (000s acres) 1987;1992 Census of Agriculture

Data Description Years Source

Acres Planted* Total area planted (000s acres) 1987;1992 Census of Agriculture

Share of Cropland* Percentage of cropland planted (%) 1987;1992 Census of Agriculture

Farms* Total farms (farms) 1987;1992 Census of Agriculture

Average Farm Size* Average farm size (000s acres) 1987;1992 Census of Agriculture

Farms with Sales* Total farms selling (farms) 1987;1992 Census of Agriculture

Sales* Total sales (1990 $000s) 1987;1992 Census of Agriculture

Average Farm Sales* Average farm sales (1990 $000s) 1987;1992 Census of Agriculture

Fertilizer Usage (3 types)** Percentage of planted acres treated (%) 1990-1995 Agricultural Chemical Usage

Herbicide Usage (All types)** Percentage of planted acres treated (%) 1990-1995 Agricultural Chemical Usage

Insecticide Usage (All types)*** Percentage of planted acres treated (%) 1990-1995 Agricultural Chemical Usage

*: Corn - No NV; Cotton - Only AL, AZ, AR, CA, FL, GA, KS, LA, MS, MO, NM, NC, OK, SC, TN, TX, VA; 

     Soybean - No AZ, CA, CT, ID, ME, MA, MT, NV, NH, NM, NY, OR, RI, UT, WA, WY

**: Corn - No NV; Cotton - Only AZ, AR, CA, LA, MS, TX; Soybean - No AZ, CA, CO, CT, ID, ME, MA, MT, NV, NH, NM, NY, OR, RI, UT, VT, WA, WV, WY

***: Corn - No NV; Cotton - Only AZ, AR, CA, LA, MS, TX; Soybean - Only AR, GA, IL, IN, KY, LA, MS, MO, NE, NC, OH, SD

Observable Market Characteristics

State Level

State and Crop Level
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fixed-cost expenditures for existing firms as market size increases rather than entry by 

additional competitors. For the case of retail industries, such as those examined by 

Ellickson (2007) and Berry and Waldfogel (2003), markets are clearly delineated spatially. 

However, the identification of distinct markets in agricultural biotechnology is potentially 

more problematic as investments in R&D may be spread over multiple geographic retail 

markets. Moreover, as we only have data on firm concentration available at the state level, 

the difficulty associated with defining relevant markets is exacerbated.  

 In order to overcome issues associated with the correct market identification, we 

first assume that R&D expenditures on GM crops released domestically can only be 

recouped on sales within the US. Although somewhat innocuous for the market for corn 

seed, this assumption may be overly restrictive for other crop types including soybeans and 

cotton. However, disparate regulatory processes across countries, as well as the significant 

size of the US market, reveals the importance of the domestic market to seed 

manufacturers. Moreover, recent surveys of global agricultural biotechnology indicate that 

many of the varieties of GM crops adopted outside of the US have also been developed 

outside of the US. (ISAAA, 2010)  

 We consider a characterization of regional submarkets for each crop variety derived 

from statistical cluster analysis of observable characteristics of agricultural production 

within each state and crop variety. Cluster analysis is a useful tool in defining regional 

submarkets as it captures the “natural structure” of the data across multiple characteristics. 

We utilize K-means clustering by minimizing the Euclidean distance of the observable 
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characteristics for each crop variety and arrive at ten corn clusters, six soybean clusters, 

and six cotton clusters.   

 The goal of cluster analysis is such that objects within a cluster (i.e. states within a 

regional submarket) are “close” in terms of observable characteristics while being “far” 

from objects in other clusters. Thus, the objective is to define distinct, exclusive submarkets 

in the agricultural seed sector by clustering states into non-overlapping partitions. We 

assume a “prototype-based” framework such that every state in some submarket is more 

similar to some prototype state that characterizes its own submarket relative to the 

prototype states that characterize other submarkets. Therefore, we utilize a K-means 

approach by defining the number of submarket clusters K for each crop type and 

minimizing the Euclidean distance between each state and the centroid of the 

corresponding cluster. For robustness, we vary the number of clusters K for each crop type 

and also consider alternate definitions for the distance function. 

 Although there is a considerable amount of observable data on market 

characteristics, we encounter an issue with the degrees of freedom required for the cluster 

analysis when we include all available data. Specifically, the number of explanatory 

variables for the cluster analysis is limited to    , where   is the number of 

observations (i.e. states with observable characteristics) and   is the number of clusters 

(i.e. submarkets). In order to reduce the problem of dimensionality in the cluster analysis, 

we use factor analysis, specifically principal-components factoring, to create indexes of 

variables that measure similar concepts (i.e. reduce monthly temperature averages to a 

single temperature index) and thereby reduce the number of explanatory variables.   
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 The cluster analysis of the market for corn seed builds upon the spatial price 

discrimination analysis of Stiegert, Shi, and Chavas (2011) by separating the major corn 

production regions into “core” and “fringe” states and refining the classification of the other 

regions to better account for observed differences in the share of corn acres planted and 

proportion of acres with herbicide and pesticide applications prior to the introduction of 

GM crops. The resulting submarkets, summarized in Figure 3 with the submarket shares of 

total US production, reveals that corn production is heavily concentrated in only thirteen 

states with Illinois and Iowa alone accounting for approximately 30% of all production.  

 

 

Figure 4: 2010 Submarket Shares of US Corn Acres Planted 
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The cluster analysis for cotton and soybean markets is slightly more problematic as fewer 

states farm these crops relative to corn. Regardless, the cluster analysis, along with 

robustness checks over the total number of clusters, reveals that the cotton and soybean 

markets can be reasonably divided into six submarkets apiece. However, there are large 

differences in the relative size of submarkets in cotton and soybean production as well as 

the regions in which production of each crop occurs. Texas accounts for over half of all 

planted acreage in cotton with the rest of the production primarily located in the 

Mississippi delta and southeast regions (Figure 5). Soybean production, on the other hand, 

primarily occurs in corn-producing regions with the significant overlap between the major 

corn and soybean producers (Figure 6). 

 

 

Figure 5: 2010 Submarket Shares of US Cotton Acres Planted 
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Figure 6: 2010 Submarket Shares of US Soybean Acres Planted 

 

Examining rates of GM adoption across submarkets (Figures 7-9) reveals distinct 

differences across submarkets for GM corn and cotton seeds, but similar adoption rates for 

GM soybean. One possible explanation for the observed differences across crop types might 

be the relatively limited number of phenotypes of GM soybean released in this period such 

that all regions had a similar preference for insect resistance.8 Although there is only 

limited number of states with available data on the percentage of farm acres planted with 

soybeans and treated with insecticide from 1990-1995, only two states (Georgia and 

                                                 
8 For additional descriptive analysis of the geographically distinct submarkets, please refer to “Appendix A: 
(Sub-)Market Analysis for GM Crops”. Specifically, Appendix A contains maps illustrating the geographical 
differences in climate and market size for each crop type as well as differences in the application of fertilizers, 
herbicides, and insecticides by crop.  
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Louisiana) reported percentage of acres treated at greater than 10% with the remaining 

states (Arkansas, Illinois, Indiana, Kentucky Mississippi, Missouri, Nebraska, North 

Carolina, Ohio, South Dakota) reporting rates that were typically less than 5% of acres 

treated. These descriptive statistics contrast greatly with those for cotton, which also had a 

limited number of phenotypes released in this period. Texas, which had the lowest rates of 

adoption of Bt Cotton, an insect resistant variety, also had the lowest rates of insecticide 

application from 1990-1995. 

 

 

 
Figure 7: Adoption Rates of GM Corn Across Submarkets 
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Figure 8: Adoption Rates of GM Cotton Across Submarkets 

 

 

Figure 9: Adoption Rates of GM Soybean Across Submarkets 
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VI. Empirical Results and Discussion 
 

 

Estimating the Lower Bounds to R&D Concentration 

 

Prior to estimating the lower bounds to R&D concentration, it is useful to illustrate why one 

would expect the agricultural biotechnology sector to be characterized by endogenous 

lower bounds. Specifically, Figures 7-9 illustrate the one- and three-firm R&D 

concentration ratios relative to market size for each crop type with and without 

adjustments for merger and acquisition activity. 

 

 

Figure 10: Corn R&D Concentration and Market Size 
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Figure 11: Cotton R&D Concentration and Market Size 

 

 

Figure 12: Soybean R&D Concentration and Market Size 
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and three-firm concentration, concentration adjusted and unadjusted for merger and 

acquisition of intellectual property, and both total market size for each crop as well as the 

market size for genetically engineered crops (1996-2000, 2001-2005, 2006-2010). The 

two-stage estimation results as well as illustrative figures are presented for each crop type. 

 

 

R&D Concentration in GM Corn Seed 

 

The lower bounds to concentration for corn seed are illustrated in Figure 13 and the 

estimation results are presented in Table 5. The results indicate a lower bound to R&D 

concentration that is increasing in the size of the market, independent of the definitions of 

R&D concentration and market size. These results are consistent with an endogenous 

lower bound to R&D concentration as illustrated in Figure 2 in which concentration is very 

low in small-sized markets and increasing in market size, which contrasts with the 

exogenous lower bound to R&D concentration which is strictly decreasing in market size. 

Moreover, factoring merger and acquisition activity into the measurement of R&D 

concentration does not significantly change the estimates for the lower bound to 

concentration in corn seed. These results imply that increased concentration of intellectual 

property in corn seed occur not as a consequence of merger and acquisition activity, but 

rather are inherent in the nature of technological competition.  
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Figure 13: Lower Bounds to R&D Concentration in GM Corn Seed 
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difficult a priori to reconcile such an analysis with the theoretical predictions. Moreover, 

Figure 13, which plots the adjusted data, does not necessarily indicate that a non-linear 

lower bound would provide a better fit.  

 In order to interpret the coefficient estimates over the range of possible market 

sizes, we consider 10% changes in the market size for both the largest and smallest 

submarkets and report the predicted lower bound results in Table 8. In the largest 

submarket (Iowa and Illinois), the predicted lower bound of the single firm R&D 

concentration ratio ranges from .3776 to .3909 and a 10% increase in market size 

increases the lower bound in the range of .0035 to .0049. For the smallest submarket 

(Northeast states), the range of predicted single firm R&D concentration ratios range from 

.1122 to .2178 and a 10% increase in market size increases the lower bound by a range 

from about .0044-.0071.  The predicted values of the three firm R&D concentration ratios 

range from .7887 to .8152 in large markets and .2409 to .5062 for small markets. A 10% 

increase in market size increases the lower bound in small markets between .0102-.0226 

and increases the lower bound in large markets between .0044-.0055.  
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Table 3: Lower Bound Estimations for GM Corn Seed 

 

 

 

R&D Concentration in GM Cotton Seed 

 

As with the market for corn seed, the estimation of a lower bound to R&D concentration in 

cotton seed implies an industry characterized by endogenous fixed costs to R&D. Figure 14 

illustrates lower bounds to R&D concentration that are again increasing in market size in 

each estimation. The results, reported in Table 6, imply a significant and increasing lower 

bound to R&D concentration that is not independent of the size of the market (i.e.     ). 

However, when merger and acquisition activity are accounted for in R&D concentration, 

LR

Concentration Market Size M&A θ0 θ1 γ δ (χ
2
=1)

Unadjusted -1.714 ** 0.240 ** 0.747 ** 1.925 ** 0.161

0.060 0.006 0.080 0.445

Adjusted -1.444 ** 0.228 ** 0.718 ** 1.913 ** 0.117

0.042 0.005 0.079 0.459

Unadjusted -0.443 ** 0.186 ** 0.710 ** 2.126 ** -0.006

0.034 0.004 0.091 0.601

Adjusted -0.069 * 0.168 ** 0.690 ** 2.118 ** 0.034

0.030 0.004 0.090 0.617

Unadjusted -7.804 ** 0.901 ** 1.007 ** 4.975 ** -0.020

0.148 0.011 0.119 0.846

Adjusted -6.244 ** 0.830 ** 0.946 ** 4.403 ** 0.016

0.119 0.010 0.111 0.801

Unadjusted -3.211 ** 0.725 ** 0.770 ** 4.007 ** 0.022

0.083 0.007 0.112 1.038

Adjusted -1.923 ** 0.625 ** 0.813 ** 4.273 ** -0.030

0.139 0.012 0.116 1.026

Source: Author's estimates.

**,*: Significance at the 99% and 95% levels, respectively.
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the predicted lower bound for the cotton seed market changes significantly in the three-

firm concentration estimations, thus implying some of the observed concentration in 

intellectual property in cotton seed has occurred as a result of firm mergers and 

acquisitions and cannot necessarily be attributed to the nature of technology competition. 

 

 

 

Figure 14: Lower Bounds to R&D Concentration in GM Cotton Seed 
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ratios range from .7811 to .8767 in the largest market with a 10% increase in market size 

raising the predicted lower bound by .0042-.0063. In the smallest-sized market, the 

predicted lower bound to the three firm R&D concentration ratio ranges from .5765 to 

.6917 and a 10% increase in market size increases the predicted lower bound by .0074 to 

.0123. 

 

Table 4: Lower Bound Estimations for GM Cotton Seed 

 

 

Comparing the predicted lower bounds of the corn and cotton seed markets, it is evident 

that the lower bound to R&D concentration in cotton seed increases somewhat more 

LR

Concentration Market Size M&A θ0 θ1 γ δ (χ2=1)

Unadjusted -2.203 ** 0.372 ** 1.260 ** 1.579 ** 0.028

0.121 0.010 0.195 0.277

Adjusted -1.822 ** 0.343 ** 1.405 ** 1.947 ** 0.066

0.123 0.010 0.231 0.313

Unadjusted -1.606 ** 0.328 ** 1.492 ** 2.277 ** 0.058

0.287 0.022 0.281 0.391

Adjusted -0.366 0.233 ** 1.474 ** 2.551 ** 0.010

0.335 0.026 0.289 0.442

Unadjusted -5.459 ** 0.986 ** 1.114 ** 5.166 ** -0.008

0.432 0.042 0.188 1.040

Adjusted -7.426 ** 1.347 ** 1.400 ** 5.101 ** 0.008

0.268 0.019 0.234 0.821

Unadjusted -2.715 ** 0.881 ** 1.328 ** 6.181 ** 0.114

0.428 0.040 0.255 1.234
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rapidly relative to corn seed. This result can be explained in part by the proliferation of 

products in the GM corn seed market (29 GM seed varieties) relative to the number of GM 

cotton seeds marketed (11 GM seed varieties). (Howell, et al., 2009) As the  -index 

decreases with the level of product heterogeneity, the R&D concentration for GM cotton 

seed is more likely to be characterized by endogenous fixed costs. 

 

 

R&D Concentration in GM Soybean Seed 

 

Unlike the estimations for GM corn and GM cotton seed, the lower bound estimations for 

R&D concentration in GM soybean seed, reported in Figure 15 and Table 10, are more 

ambiguous. Although six of eight lower bound estimations are indicative of endogenous 

fixed costs in R&D with R&D concentration increasing with market size, the estimations for 

the GM market are relatively flat and it is not evident that these estimations are 

significantly different from zero for feasible market sizes. Moreover, from the estimations 

for total market size, the results indicate that even though the market appears to be 

characterized by endogenous fixed costs, much of the concentration has occurred as a 

result of merger and acquisition activity. Despite relatively high levels of product 

homogeneity (5 GM soybean varieties) and data points that imply a lower bound to R&D 

concentration in Figure 12, the empirical results provide only partial evidence that the 

market for GM soybeans is characterized by endogenous fixed costs. (Howell, et al., 2009) 
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Figure 15: Lower Bounds to R&D Concentration in GM Soybean Seed 
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firm R&D concentration ratio, the predicted lower bound when considering mergers and 

acquisitions is lower.  

 It is also important to address the similarities and differences in the second-stage 

estimations for GM corn, cotton, and soybean seeds. Recall that the parameter   

corresponds to the shape of the Weibull distribution such that a lower value of   

corresponds to a higher degree of clustering around the lower bound. Additionally, the 

scale parameter   describes the dispersion of the data. Most interesting are the results on 

the shape parameter   which imply a high degree of clustering on the lower bound for all 

crop types, with cotton being characterized by the least clustering and corn the most. 

Moreover,   is less than two in all 24 estimations implying that the two-step procedure of 

Smith (1985, 1994) is appropriate. Finally, the estimations of the scale parameter   

indicate a wider dispersion of R&D concentration in the three-firm estimations relative to 

the one-firm estimations. 
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Table 5: Lower Bound Estimations for GM Soybean Seed 

 

LR

Concentration Market Size M&A θ0 θ1 γ δ (χ2=1)

Unadjusted -0.450 ** 0.100 ** 1.325 ** 1.015 ** 0.006

0.105 0.014 0.217 0.172

Adjusted -1.990 ** 0.321 ** 1.674 ** 1.092 ** -0.035

0.137 0.017 0.272 0.147

Unadjusted 0.302 0.048 1.261 ** 0.963 ** -0.029

0.191 0.027 0.249 0.201

Adjusted -0.197 0.145 ** 1.410 ** 1.067 ** -0.060

0.127 0.017 0.303 0.198

Unadjusted -1.892 ** 0.383 ** 1.317 ** 2.093 ** -0.033

0.188 0.024 0.213 0.357

Adjusted -6.835 ** 1.091 ** 0.913 ** 2.888 ** -0.053

0.332 0.041 0.168 0.699

Unadjusted 0.317 0.232 ** 1.009 ** 1.609 ** -0.057

0.371 0.049 0.205 0.418

Adjusted 1.048 0.117 1.082 ** 3.727 ** -0.029

0.863 0.119 0.221 0.876

Source: Author's estimates.

**,*: Significance at the 99% and 95% levels, respectively.

First-Stage Second-Stage

R1

Total

GM

R3

Total
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Table 6: Predicted Lower Bounds for GM Corn, Cotton, and Soybean Seeds 

 

 

 

 VII. Conclusions 
 

 

In the second essay, we examine whether a specific industry, agricultural biotechnology, is 

characterized by endogenous fixed costs associated with R&D investment. In a mixed 

model of vertical and horizontal product differentiation, we illustrate the theoretical lower 

bounds to market concentration implied by an endogenous fixed cost (EFC) model and 

derive the theoretical lower bound to R&D concentration from the same model. Using data 
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Bound 0.2625 0.5264 0.2998 0.4616 0.6631 0.9187 0.7140 0.6323
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10% Change 0.0128 0.0378 0.0022 0.0060 0.0354 0.0773 0.0059 0.0032

Source: Author's estimates
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on field trial applications of genetically modified (GM) crops, we estimate the lower bound 

to R&D concentration in the agricultural biotechnology sector. We identify the lower bound 

to concentration using exogenous variation in market size across time, as adoption rates of 

GM crops increase, and across agricultural regions.  

The results of the empirical estimations imply that the markets for GM corn, cotton, 

and soybean seeds are characterized by endogenous fixed costs associated with R&D 

investments. For the largest-sized markets in GM corn and cotton seed, single firm 

concentration ratios range from approximately .35 to .44 whereas three firm concentration 

ratios are approximately .78 to .82. The concentration ratios for GM soybean seeds are 

significantly lower relative to corn and cotton, despite greater levels of product 

homogeneity in soybeans.  Moreover, adjusting for firm consolidation via mergers and 

acquisitions does not significantly change the lower bound estimations for the largest-sized 

markets in corn or cotton for either one or three firm concentration, but does increase the 

predicted lower bound for GM soybean seed significantly. These results imply that 

concerns of concentration of intellectual property resulting from mergers and acquisitions 

in agricultural biotechnology are more important for some crop types relative to others. 

The empirical estimations imply that the agricultural biotechnology sector is 

characterized by endogenous fixed costs associated with R&D investments. As firms are 

able to increase their market shares by increasing the quality of products offered, there are 

incentives for firms to increase their R&D investments prior to competing in the product 

market. The lower bound to concentration implies that even as the acreage of GM crops 

planted increases, one would not expect a corresponding increase in firm entry. However, 
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the results from the estimations for GM soybean seeds indicate that concerns for increased 

concentration of intellectual property arising from firm mergers and acquisitions may be 

justified, even though there is little evidence to support this claim from the corn and cotton 

seed markets. 

 Given the increased concerns over concentration in agricultural inputs, and in 

particular in agricultural biotechnology, regulators and policymakers alike will find these 

results of particular interest. Whereas increased levels of concentration are often 

associated with an anticompetitive industry, the presence of endogenous fixed costs and 

the nature of technology competition in agricultural biotechnology imply a certain level of 

concentration is to be expected. Specifically, R&D activity is concentrated within three to 

four firms across corn, cotton, and soybeans and the ratios of concentration have been 

changing little over the past 20 years. Moreover, the empirical model leaves open the 

possibility that the introduction of second and third generation GM varieties, the opening of 

foreign markets to GM crops, future exogenous shocks to technology, or reductions in 

regulatory cost could lead to additional entry, exit, or consolidation in the industry. 
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Appendix A: (Sub-)Market Analysis for GM Crops 
 

Submarket Analysis: State-Level Climate 

 

Figure 16: Average Monthly Temperatures Factor Analysis 

 

Figure 17: Average Monthly Precipitation Factor Analysis (1) 
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Source: Author’s calculations from NOAA data (1970-2000). 

Source: Author’s calculations from NOAA data (1970-2000). 
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Figure 18: Average Monthly Precipitation Factor Analysis (2) 

 

 

Figure 19: Average Monthly Drought Likelihood Factor Analysis 
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Source: Author’s calculations from NOAA data (1970-2000). 

Source: Author’s calculations from NOAA data (1970-2000). 
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Submarket Analysis: Corn 

 

 

Figure 20: Corn Seed Market Size Factor Analysis 

 

Figure 21: Percentage of Planted Corn Acres Treated with Fertilizer 

 

Source: Author’s calculations from Census of Agriculture (1987, 1992). 
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Source: Author’s calculations from Agricultural Chemical Usage (1990-1995). 
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Figure 22: Percentage of Planted Corn Acres Treated with Herbicide 

 

 

Figure 23: Percentage of Planted Corn Acres Treated with Insecticide 

  

Source: Author’s calculations from Agricultural Chemical Usage (1990-1995). 

Source: Author’s calculations from Agricultural Chemical Usage (1990-1995). 
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Submarket Analysis: Cotton 

 

Figure 24: Cotton Seed Market Size Factor Analysis 

 

 

Figure 25: Percentage of Planted Cotton Acres Treated with Fertilizer (1) 

 

Source: Author’s calculations from Census of Agriculture (1987, 1992). 
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Source: Author’s calculations from Agricultural Chemical Usage (1990-1995). 
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Figure 26: Percentage of Planted Cotton Acres Treated with Fertilizer (2) 

 

 

Figure 27: Percentage of Planted Cotton Acres Treated with Herbicide 

 

Source: Author’s calculations from Agricultural Chemical Usage (1990-1995). 

More 
 

 
Less 
No Data 
 

Source: Author’s calculations from Agricultural Chemical Usage (1990-1995). 
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Figure 28: Percentage of Planted Cotton Acres Treated with Insecticide 

 

Submarket Analysis: Soybean 

 

Figure 29: Soybean Seed Market Size Factor Analysis 

 

Source: Author’s calculations from Agricultural Chemical Usage (1990-1995). 
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Source: Author’s calculations from Census of Agriculture (1987, 1992). 
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Figure 30: Percentage of Planted Soybean Acres Treated with Fertilizer 

 

Figure 31: Percentage of Planted Soybean Acres Treated with Herbicide 

 

Source: Author’s calculations from Agricultural Chemical Usage (1990-1995). 

Source: Author’s calculations from Agricultural Chemical Usage (1990-1995). 
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Figure 32: Percentage of Planted Soybean Acres Treated with Insecticide 

 

 

Source: Author’s calculations from Agricultural Chemical Usage (1990-1995). 
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