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Abstract

Climate policy is far from certain in the United States. Major clean energy tax credits have

experienced repeated cycles of short-term renewal and expiration, and the US government’s

environmental policies tend to be greatly affected by changes in the political affiliation of

the administration. Given that, the investigation into the uncertainty of climate policy and its

economic and environmental impacts in the US is paramount. I develop a dynamic stochastic

model of the US economy with major carbon-emitting sectors, explicitly incorporating the

uncertainty and varying stringency of the government’s climate policies. The simulation results

highlight that, in the face of policy uncertainty, the investment decisions can be preempted

or delayed depending on the current policy stringency, and a deterministic model can over-

predict CO2 emissions, 8-12% more than when a stochastic model is used. The examination

of policy timing scenarios reveals that achieving lower emissions in 2050 requires enacting

stricter policies close to the target year whereas minimizing the cumulative emissions, thus

contributing less to global warming, is accomplished by earlier adoption of policies, though

possibly repealed later. The analysis further suggests that scenarios with earlier policy adoption
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are associated with up to 35% lower abatement costs than those with later policy adoption.

Lastly, an extended model that considers learning-by-doing effects in cost reductions for low-

emitting technologies leads to delayed abatement efforts, ending up with 1.3-1.7 times higher

average abatement costs. The research would provide insights into climate policy analysis and

have policy implications for the significance of stringency and timing of the climate policy

adoption and pathways to meet the US mid-century climate goal and mitigate global climate

change.

Keywords: US climate policy, climate policy uncertainty, dynamic stochastic model, abate-

ment cost, policy timing, learning-by-doing

JEL Classification: Q58, Q54

1 Introduction

The Inflation Reduction Act of 2022 (IRA) is praised as a significant achievement in the history

of US climate policy. Studies suggest that the IRA would help the US achieve net greenhouse gas

(GHG) emissions 30-43% below 2005 levels in 2030, relative to 25-35% without it (Jenkins et al.,

2022; Mahajan et al., 2022; Larsen et al., 2022). Among the drivers behind these expectations

are two critical elements in the bill, each extending tax credits for clean energy projects and clean

vehicle purchases through 20321. Without the IRA, they were scheduled to phase out or down

soon, possibly ending up decelerating the momentum in the deployment of renewable energy and

electric vehicles. This ten-year-long extension is unprecedented as investment and production tax

credits (ITC and PTC) have been characterized with repeated short-term expiration and renewal

cycles. For example, the wind energy PTC extended over 10 times since its initial enactment in

1992 (Sherlock, 2020). Many of the policies to incentivize low-carbon technologies, including

clean energy, had expiration dates, faced significant policy uncertainty, and eventually incurred

occasional policy lapses, from two days to 11 months, and consequent boom-bust cycles of in-

1See Section 13101, 13102, 13103, 13701, and 13702 for clean electricity credits, and Section 13401, 13402, and
13403 for clean vehicle credits
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Figure 1: Annual Wind Power Capacity Additions (MW) and Policy Renewal and Expiration

vestment2(Stokes and Breetz, 2018). Figure 1 shows the bunching of investment in wind power

before expected policy expiration, particularly in 2001, 2003, 2012, and 2021. Thus, despite the

decade-long guarantee of tax credits, it may be still uncertain whether the Act will accomplish

up to its target3, and furthermore, whether the US economy will actually reach carbon neutrality

by the mid-century, due to the uncertainty surrounding the government’s commitment to climate

policy. A political pendulum of energy and environmental policy in the US has swung throughout

its history (Ruckelshaus, 1996). The trend has continued to this date, especially, in the arena of the

climate policy, which was illustrated by a series of the US government’s decisions of withdrawal

from and reentry to the Paris Agreement.4 The changes in the government’s political affiliation

in the US have tended to end up with weakening or repeal of environmental legislation. Given

that, the investigation into the uncertainty of climate policy and its economic and environmental

2In retrospect, the wind and solar tax credits have never expired as their renewal retroactively applied to the pro-
ducer (Sherlock, 2020). Still, failure to extend before their expiration dates results in considerable uncertainty for
investors.

3After the passage of the IRA, there have already been few Republican-led attempts to repeal climate provisions
of the IRA, including “H.R. 812 - Inflation Reduction Act of 2023” introduced by Rep. Andy Ogles (R-Tenn.) and
debt ceiling proposal in 2023. Furthermore, some of 2024 republican presidential candidates, including Trump, may
plan to tighten the budgets for the IRA tax credits (See https://www.politico.com/news/2023/08/16/how-a-republican-
president-could-hobble-the-climate-law-00111555 for details).

4See https://www.nytimes.com/interactive/2020/climate/trump-environment-rollbacks-list.html and
https://www.npr.org/sections/inauguration-day-live-updates/2021/01/20/958854421/biden-to-move-quickly-on-
climate-change-reversing-trump-rollbacks for how a following administration attempted to undo what its preceding
one does on environmental policies.
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impacts in the US is paramount.

Previous US models that examine climate policies tend to focus on the economic impacts of

climate change policies, including carbon pricing and revenue recycling schemes (Goulder and

Hafstead, 2017; Yuan et al., 2019), using general equilibrium approaches. A recent study that

analyzes the economic implications of the IRA uses a simplified neoclassical growth model with

a focus on the electricity sector to evaluate the macroeconomic impacts of the IRA tax credits and

compare them with those of carbon pricing (Bistline et al., 2023). Despite their thorough modeling

of the economy and policy instruments, they rarely discuss the uncertainty and feasibility of the

climate policy adoption and only model the implementation of alternative climate policies at a

certain point in time or for a particular period. Theirs might be naive approaches considering the

US political volatility and the fact that a carbon price has never been introduced at a national level

and is not supported by the majority in the US (Rabe, 2018).5 The political feasibility and timing of

policy action are relevant and critical in economic assessments of climate policies, and frameworks

that can incorporate differentiated political feasibility assumptions are necessary (Goulder, 2020).

Fried et al. (2021) attempt to analyze the effects of the uncertainty around climate policy adoption

on the US economy by comparing two pre-tax steady states with and without the risk of a carbon

tax using a dynamic general equilibrium model. However, their representation of the policy risk,

as a one-time event with a probability, is far simpler than the evolution of climate politics in the

real world, and the study is not designed to show the possible future pathways of the economic and

environmental outcomes.

Climate policy uncertainty has been discussed more in the literature that is based on real options

theory (Dixit and Pindyck, 1994), mostly with a conceptual model of a specific sector. Real options

approach to an investment decision analysis takes into account the value of holding an option to

invest and waiting for new information that reduces uncertainty. Fuss et al. (2008) investigate

the impacts of market price volatility and climate change policy uncertainty on the diffusion of

5Even in Washington State, a relatively liberal state, two carbon tax referendums in 2016 and 2018 failed to win the
majority, and it is predicted that the Washington’s Pigouvian tax is unlikely passed in other states as well (Anderson
et al., 2019).
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mitigation technologies in the electricity generation sector. The policy uncertainty is specified

as bifurcation scenarios with a set of (non)commitment year and commitment probability. They

find market uncertainty leads to an earlier action whereas policy uncertainty induces a delay of

investment in carbon capture and storage technologies. Their conceptual analysis is intuitive in

providing the different impacts of distinct types of uncertainties. However, it is limited in the

technology investment options and its specification of policy uncertainty might be less realistic.

A more realistic characterization of climate policy uncertainty adopted in real options frame-

work might be a jump process with a frequency (Fuss et al., 2009; Reinelt and Keith, 2007; Blyth

et al., 2007). When compared with a more frequently changing Brownian motion type CO2 price,

a less often updated policy regime is found to be preferred by investors and also by policy-makers

who aim to reduce cumulative CO2 emissions (Fuss et al., 2009). Also, by showing a shorter time

window of policy change can deter investments, increasing policy certainty is emphasized (Blyth

et al., 2007). In a similar context, Prest et al. (2021), by examining energy investments under uncer-

tainty, highlight durable, even if modest, policies can induce investment in green energy as these

policies serve as a signal to stricter carbon price, given their preferred uncertainty specification.

Those studies are significant in that they explain the relationship between policy uncertainty and

investment in low-emitting technologies and provide perspectives on policy certainty. Still, their

studies are based on simplified single-sector model with only few technology options and thus fall

short of a complete analysis of impacts of policy uncertainty on the entire economy.

The present study aims to investigate the impacts of US climate policy uncertainty on its econ-

omy and to show differing pathways by 2050 given policy uncertainty. The primary focus lies in

the results of investment patterns, electricity generation by technology type, electric vehicle miles

traveled (eVMT), and CO2 emissions and abatement costs. The suggested model explicitly incor-

porates the possibility of switches of the government’s commitment to its climate policies. The US

economy is characterized by a neoclassical growth model with the primary energy, electricity gen-

eration, transportation, and final goods sectors. The primary energy sectors include coal, natural

gas, and crude oil. For the electricity generation sector, the model considers four types of power
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plants: coal, natural gas, solar, and wind power plants. Transportation service is provided by either

gasoline-based internal combustion engine cars or electric vehicles. The research investigates how

climate policy instruments, which imitate the IRA bill’s tax credits, and their implementation tim-

ing would impact the supply of electricity and transportation, specifically, the substitution between

non-renewable energy and renewable energy and between gasoline and electric vehicles, and thus

CO2 emissions from those sectors. Policy uncertainty is represented as a Markov process, where

the next period’s policy state is dependent on the current policy state and a corresponding transition

probability. It is assumed that the stringency of climate policy is decided in each presidential elec-

tion year, and is put into effect after a year lag of implementation. Different levels of stringency

are associated with different levels of tax credits for emissions reduction technology options in

energy and transportation sectors. Lastly, the research adds to the basic model learning-by-doing

(LBD) effects in capital investment cost reduction to analyze the interaction between LBD and

policy uncertainty.

To solve this non-stationary dynamic stochastic model, the study adopts the Simulated Cer-

tainty Equivalent Approximation method (Cai and Judd, 2023). This method is developed to solve

a large-scale dynamic stochastic model with non-stationarity and potential kinks, which have been

thorny issues to conventional approaches, including value function iteration, as they undergo a

process of function approximation. By utilizing optimal control method and certainty equivalent

approximation, the method is shown to solve a non-stationary dynamic stochastic model in envi-

ronmental and resource economics in a more stable and efficient manner (Steinbuks et al., 2023).

The main analyses are fourfold. In the first analysis, I examine the general impact of account-

ing for stochasticity in a climate change policy analysis, comparing economic and environmental

outcomes from a deterministic model and its stochastic variant. The second analysis investigates

a political economic aspects of policy uncertainty with a particular form of policy transition spec-

ification. Third analysis discusses the timing uncertainty of policy implementation and contrasts

distinct scenarios characterized with the equal length of periods, yet with varied schedules of an

identical set of policies. The last analysis extends the basic model to incorporate learning-by-doing
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effects in technology capital investment costs to explore the interaction between policy uncertainty

and endogenous technological growth and how it impacts economic and environmental outcomes.

To summarize the results, the first analysis finds that accounting for the stochasticity of the cli-

mate policy regime in the model can overall lead to a wider range of outcome pathways, in terms of

renewable electricity generation and electric vehicles miles traveled, relative to using a determinis-

tic model with perfect-foresight assumption. These trends are attributable to investment decisions

delayed or preempted due to the policy uncertainty. When currently in a stringent policy state, it

is optimal to invest in low-emitting technology to exploit tax credits today, whereas investment is

held up when in a lenient policy state. Interestingly, all representative sample paths discussed in

the first analysis demonstrate lower CO2 emissions, up to 12% (around 243 million metric tons)

when simulated using the stochastic model. The trend is driven differentially by the bunching of

investment in stricter policy scenarios or by reduced and delayed investment in the electricity and

transportation sectors in laxer policy scenarios. In terms of abatement costs, the stochastic model

estimates the average costs 2.5 times higher than the deterministic model does. The efficiency

of mitigation efforts are lower under uncertainty due to the ill-timed investment decisions under

uncertainty.

The second analysis provides a political economic aspect of modeling uncertainty. The analysis

adopts policy uncertainty specification based on persistent policy assumption and demonstrates

the results closer to those from the deterministic model. In the most stringent policy scenario,

the results with policy persistence exhibits 28.5% lower renewable electricity investment through

2050 and also a narrower range of outcomes than the results from the original volatile policy

specification. The abatement costs from this analysis is estimated to range between the original

stochastic model results and the deterministic model results. The results suggest the role of policy

durability in improving the efficiency of mitigation efforts.

In the third analysis of policy implementation timing uncertainty, the results imply that sce-

narios with policy adoption concentrated in the later periods bring about outcomes with more

renewable electricity generation and lower CO2 emissions in the year 2050. On the other hand,
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scenarios with policies enacted in the earlier years see less CO2 emission cumulatively through

2050. In terms of abatement costs, earlier policy adoption scenarios, despite later policy drop, out-

perform later adoption scenarios, achieving a maximum of 35% average abatement cost reduction.

Lastly, frequent switches in policy regimes would cause more boom-bust cycles in investment,

ending up with higher spending on subsidies and an average abatement cost that is 30% higher

than earlier adoption scenario.

The last analysis illustrates that the extended model with learning-by-doing effects generally

projects lower annual emissions in 2050, yet higher cumulative emissions through 2050. When

learning-by-doing effects interact with policy uncertainty, investments accelerate in the later pe-

riods thanks to increased capital returns, and more emissions reductions are induced close to the

mid-century. Due to this later transition to lower-emitting technologies, the model estimates 1.3-

1.7 times higher average abatement costs within the simulation period, relative to the basic model

with exogenous technological growth. The analysis stresses the significance of model specification

choices in a policy analysis with fast-growing technologies.

This research contributes to the literature on the economic analysis of US climate policy and

decarbonization pathways, where a deterministic model is often used. The suggested model explic-

itly incorporates the possibility of switches of the government’s commitment to climate policies,

setting it apart from the literature (Goulder and Hafstead, 2017; Yuan et al., 2019; Bistline et al.,

2023) which assumes perfect foresight and adopts scenario-specific parameters to address future

uncertainty. In addition, the model analyzes the effects of policy uncertainty throughout the entire

US economy, different from previous studies using real options approaches which focuses only on

the electricity sector (Fuss et al., 2008; Reinelt and Keith, 2007; Blyth et al., 2007; Prest et al.,

2021). Furthermore, incorporating endogenous technological growth and examining its interaction

with policy uncertainty is another innovation, often absent in real options-based literature on cli-

mate policy uncertainty. In the context of investment under uncertainty, the study is distinct from

the previous literature in that whether the action of investment is committed earlier or delayed is

not always clear, and rather depends on the current policy state and the expected policy state. An-
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other potential significance of the study relates to its consideration of policy schedule uncertainty

and political economic aspects in a policy analysis. This is particularly important for a country

like the US, which occasionally observes a swinging political pendulum and whose environmental

policies are politically polarized. In this aspect, policy uncertainty may only be partially resolved

for a certain period of time before a significant event such as the presidential election takes place,

unlike the literature specifying uncertainty that can be resolved completely once new information

arrives (Fried et al., 2021). The results of this research would help inform policy-making by ad-

dressing various aspects of US climate policy, underscoring the significance of considering policy

uncertainty in a policy analysis and highlighting the differences in the efficiency and effectiveness

of climate policies across scenarios.

2 Data and Calibration

Data are used as reference for model parameter calibration or as inputs for model simulation. For

calibration, the US gross domestic product (GDP), capital stock, electricity generation and capac-

ity by energy source, fossil fuel extraction and consumption are used. The US gross domestic

product and capital stock are based on the data from the Bureau of Economic Analysis (BEA). The

data on fossil fuel extraction, electricity generation, and transportation sectors come from the US

Energy Information Administration (EIA). Next, simulation requires projections of capital invest-

ment costs for the period of interest. An EIA’s Annual Energy Outlook (AEO) provides estimated

projections of overnight capital investment costs of power plant by technology type and light-duty

sales prices for various scenarios. I adopt the projection of reference case of the AEO 2022. To

compute the electricity generation and gasoline vehicle CO2 emissions in the simulation, I cal-

culated future carbon emissions intensity by dividing the CO2 emissions by sectoral production.

Lastly, population projection is drawn from the US Census Bureau. Some of projections are pro-

vided until 2050, and thus the inputs for the rest of the simulation periods are extrapolated. The

base year values are included in Appendix A.
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2.1 Calibration

A comprehensive set of parameters are calibrated to match the reference EIA projections: social

time preference, discounting factors, sectoral depreciation rates, productivity parameters, fossil

fuel extraction cost parameters, elasticity of substitution and cost share parameters in production

functions. The calibration results are included in Appendix B.

3 Method

3.1 Model

This study proposes a stochastic growth model to examine the impacts of climate policy uncertainty

on the US economy. A social planner’s problem incorporating electricity generation, resource

extraction, and transportation sectors, shown in Figure 2, is solved using the Simulated Certainty

Equivalent (SCEQ) method (Cai and Judd, 2023) for 2023 through 2050. The dynamic paths of

optimal investment and production are determined to maximize the social welfare in the face of

policy uncertainty. All model equations are presented in Appendix D.

3.1.1 Economic Structure and Policy Impacts

The US economy is specified with focus on the sectors which play a major role in the CO2 emis-

sions and thus often subject to the target of a climate policy. For simplicity, I assume a closed

economy where the domestic demand is entirely met by the domestic supply. Though this may

be a plausible assumption for the net total energy trade as the US observed a switch from a net

importer to a net exporter in recent years. Still, the supply of particular products, including crude

oil, are dependent on imports and thus their trade need to be accounted, which can be a caveat of

the study.

Figure 2 shows the economic structure adopted for the study. There is a final output produced

using four inputs–capital, labor, energy and transportation. The representative household allocates
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the output to consumption, investment, or extraction of fossil fuels. The energy input is comprised

of electricity and primary fossil fuels. The electricity is generated from five different types of

power plants – coal, natural gas, solar PV, wind, and the others. The electricity supply from the

others is exogenously given and assumed to be constant. The primary fossil fuels include coal,

natural gas and crude oil. The transportation sector only considers the miles traveled by gasoline-

or electricity-powered light duty vehicles that account for 70-80% of vehicle miles driven in the

US, and other light-duty vehicles, including diesel and hybrid, are not modeled in the current study.

Medium- and heavy-duty trucks are assumed to be aggregated into general capital stock as they

are mostly used for industrial transportation.

The CO2 emissions accounted for in the study include emissions from the electricity generation

sector and and light-duty vehicles, which together constitutes around 50% of gross CO2 emissions

in the US. Modeling the rest of CO2 emissions and potential impacts of relevant policy schemes is

beyond the scope of this study.

As shown in Figure 2, the focus of analysis lies in the impacts of climate policy uncertainty

on the investment and production decisions made in the electricity generation, resource extraction

and transportation, and the consequential influence on CO2 emissions. For example, the following

equation that describes the law of motion for the renewable energy capacity explains how a tax

credit impacts the decisions:

Ks
t+1 =

(
1−δ

n f
)

Ks
t +

Is
t

(1− τrenew
t (Xt)) ps

t
(1)

where Kt is the generation capacity, δ n f is the capital depreciation rate for renewable energy

capacity, and ps
t is the overnight capital costs per Watt installation. τrenew

t is the investment tax

credit for solar and wind power plants and is a function of the policy state, Xt . Depending on

a realized tax credit, τrenew
t (Xt) (e.g., 30%), in a given year, per unit investment cost can either

decrease or increase, thus contributing to the changes in the returns on investment and investment

decisions. A similar process applies to the investment in electric vehicle stocks, as shown in the
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Figure 2: Economic Structure Schematic Diagram

equation 13. The following section explains the policy state transition mechanism.

3.1.2 Policy Uncertainty Module

The study considers two types of tax credits that draw on the recently-passed Inflation Reduction

Act of 2022. The IRA extended the current production tax credit (PTC) for wind energy (Sec.

13101) and investment tax credit (ITC) for solar energy (Sec. 13102) until 2024 and introduced

new clean electricity credits for both wind and solar effective from 2025 (Sec. 13701 and 13702)6.

Also, a purchase of a clean vehicle qualifies for up to $7,500 tax credit under Internal Revenue

Code Section 30D (Sec. 13403). Each tax credit is expected to incentivize the installation of

renewable power plants and purchase of electric cars. As most tax credits in the IRA, I assume

there is no cap on tax credit distribution.

In simulating, it is assumed that the IRA is effective until 2024 under certainty thanks to the

6To simplify modeling, the PTC for wind is replaced with the ITC in simulations. Though this change is not
consistent with the existing legislation, there was a precedent when taxpayers can choose to receive ITC instead of
PTC for wind energy under the American Recovery and Reinvestment Act of 2009 (P.L. 111-5).
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two years of extension, and after then the uncertainty is introduced. With the incentive level of the

IRA indexed as the policy state, Xt = 1, three other policy states are specified in proportion to IRA:

Xt =0, 1/3, and 2/3 represent zero policy state, one third of IRA, and two thirds of IRA, respec-

tively. For example, for the policy state equal to 1/3, the clean energy ITC is 10%. The rationale

behind the highest state equal 1 is based on the historical ITC maximum, and as new technolo-

gies threaten incumbents, more controversies and opposition tend to arise against the technologies

(Stokes and Breetz, 2018).

The policy uncertainty is characterized as a Markov process with four possible policy states,

Xt ∈
{

0, 1
3 ,

2
3 ,1
}

, and the time-varying transition probability matrix in year t,

Pt =



0.4 0.35 0.25

0.25 0.4 0.25 0.1

0.1 0.25 0.4 0.25

0.25 0.35 0.4


f or t = electionyears

Pt =



1

1

1

1


otherwise

The matrix above shows the probabilities of transition from the current state (row, i) to the

next state (column, j). For example, the probability of switching from the most stringent state

of Xt = 1 to the second most stringent one, Xt+1 = 2
3 , is 0.35, shown in Pt,4,3 for election years.

The realization of a policy shock every four years, in presidential election years, determines the

stringency of climate policy, Xt . For every policy state, there is 40% chance of no policy change

in the next presidential term, and a transition to an adjacent level specified as more probable than

a move to a farther state in an attempt to model the existence of policy stickiness. It is assumed

that the policy state changes with a year lag after the presidential election year considering law
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implementation process. Under this future climate policy uncertainty, investment and resource

extraction decisions are optimized through 2050.

This study considers a policy regime change as an exogenous factor. The probability distri-

bution of adoption or repeal of a climate policy is not known and, thus, the policy state changes

can fall into the category of ambiguity or deep uncertainty7. When the parameter values are am-

biguous, the most common measure to address this is sensitivity analysis (Cai, 2021). I conduct

sensitivity analyses with respect to the transition probability in Appendix E to examine how the

solutions change and whether they are qualitatively robust.

3.1.3 Learning-by-Doing Effects (Extended Model)

An extended model considers learning-by-doing (LBD) effects in capital cost reductions. The

basic model takes the EIA baseline projections of capital costs, ps
t , for all sectors, whereas the

extended model formulates capital costs as functions of cumulative capital additions, Ks,cumulative
t ,

for a sector, s (Arrow, 1962):

ps
t = as.

(
Ks,cumulative

t

Ks,cumulative
0

)bs

+ cs (2)

where as + cs = ps
1 (the initial year cost). bs represents the learning rate parameter for the sector

s. Adding the second constant term imply the existence of a lower bound for capital cost. The

LBD effects are incorporated in four relatively fast-advancing sectors–natural gas, solar, and wind

power plants, and electric vehicle–and coal power plant and gasoline vehicle cost projections still

follow the EIA baseline projections.

7A growing body of the literature in economics relates extreme weather events to voting behaviors and the public
support for climate policy (Liao and Junco, 2022; Elliott et al., 2023; Sisco and Weber, 2022; Holub and Schundeln,
2022). Still, in political science, societies have been slow in politically accepting climate change and proclimate policy
is lobbied against by interest groups (Colgan and Hinthorn, 2023).
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4 Results

In this section, four main analyses are presented based on the dynamic stochastic model simula-

tions. First, the overall effects of modeling policy uncertainty is examined by comparing results

from deterministic and stochastic versions of the basic model. The outcomes of interest include

electricity generation by technology, vehicle miles traveled by vehicle type, CO2 emissions, and

emissions abatement costs. This analysis would highlight how optimal decisions in technology

investments are made differently under uncertainty and their consequent impacts on the economic

and environmental outcomes. The second analysis examines the effects of policy persistence. By

adopting a particular specification of Markov transition matrix, the analysis would give a glimpse

of how a political economic element can be incorporated in the current research. Thirdly, the

effects of policy implementation timing are investigated by comparing scenarios with the same

length of policy execution periods, yet differentiated by their implementation schedules. It aims to

show, as with policy stringency equal, how policy enforcement timing can drive varied outcomes

and abatement costs in a dynamic setting. In the last section, the model is extended by adding

learning-by-doing effects in electricity and transportation technology investment costs. The com-

parison between the basic model and the extended model with endogenous technological growth

highlights the differences between the two modeling approaches when interacting with policy un-

certainty.

4.1 Effects of Uncertainty

In Figures 3-6, four outcomes from the deterministic model and the stochastic model simulations

are displayed. For each figure, the left panel shows four deterministic model results that correspond

to each of the four possible policy state stringency from zero to one. The right panel shows the

range of all sample paths of stochastic model simulations, together with the sample paths of the

policy scenarios identical with those simulated in the deterministic setting. The sample paths

are generated from 1000 simulation runs. Despite their policy state paths equal, the stochastic

15



model is distinct from the deterministic model in that it incorporates policy state uncertainty into

optimization process unlike the deterministic one that assumes all policy state is known at the

beginning with certainty based on perfect foresight assumption. The uncertainty comes in from

the 2024 election, whose impact goes into effect from the year 2025.

First, all outcomes exhibit distinct pathways between the deterministic and stochastic model

results. The deterministic model simulations generate smooth paths of outcomes whereas the

stochastic model runs produce spike shape and piecewise shape of pathways for investment and

low-emitting technology outputs, respectively, even when the policy state stays constant through-

out all periods. This illustrates how optimal investments are determined differently under certainty

and under uncertainty, and the necessity of stochastic modeling for an analysis of policy imple-

mentation uncertainty as underscored in Goulder (2020).

In Figure 3, renewable electricity investment patterns in stochastic model simulations shows

the boom-bust patterns, similar to the patterns found before tax credit expiration for wind energy

in 2013 (Figure 1). When the current policy regime is more stringent, as in the US today, and

provides generous credits and reduced or zero credits are expected tomorrow, which includes the

cases of “Stochastic: Policy=1” or “Stochastic: Policy=2/3”, investment decisions are made before

the potential switch in the regime and a bunching of investment happens. On the contrary, in the

scenarios of “Stochastic: Policy=1/3” or “Stochastic: Policy=0”, classified as relatively lenient

policy scenarios, investment is delayed until the next policy state realization, waiting for higher

tax credits tomorrow. This is a type of results commonly found in real options literature (Fuss

et al., 2008) as well as manifested in the real world8. When comparing the net present value of

cumulative investment of deterministic and stochastic model results, it is found that for two laxer

scenarios, stochastic results show lower investment (31% for Policy=0 and 17% for Policy=1/3),

whereas for two stricter scenarios, stochastic results show higher investment (46% for Policy=1

and 5% for Policy=2/3). This implies that, as in the current case of the US with a 30% tax credit,

when a signal of policy uncertainty and expectation of lower tax credits go into the market, there

8In 2014, wind tax credit was absent before it is renewed in December and a large quantity of wind power capacity
was added in December.
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could happen a bunching behavior and, thus, more government expenses than estimated using a

deterministic model. On the other hand, if the US falls into a state with lower tax credits and

there exists a debate in the Congress over increasing tax credits, investment into lower-emitting

technologies might be delayed and substantially lower, slowing the transition toward a low-carbon

economy.

These investment pattern differences lead to gaps in renewable electricity generation and elec-

tric vehicle miles traveled, though the latter is less obvious. As shown in Figure 4, the two relatively

stricter scenarios result in higher renewable electricity under uncertainty (11% for Policy=1 and

3% for Policy=2/3 in 2050), and in the other scenarios, lower renewable electricity under uncer-

tainty (8% for Policy=0 and 3.5% for Policy=1/3 in 2050). The consequences of differential eco-

nomic decisions across the scenarios, interestingly, generate similar trends in total CO2 emissions.

All four sample scenarios show lower emissions from stochastic model results, yet via different

channels. Lower CO2 emissions under in the stringent scenarios are attributed to expedited invest-

ment in low-emitting technologies due to the exploitation of the currently higher tax credits. On

the other hand, in the less strict scenarios, the main driver is the reduced and delayed investment

across the economy, including fossil fuel power capacity, with the expectation of higher tax credits

for renewables and electric vehicles. As a result, in 2050, stochastic model projects 12% lower

emissions for policy=1 and 8% lower for policy=0. This implies that using a deterministic model

to evaluate the impacts of proclimate policies may over-predict greenhouse gas emissions, thus

allocating subsidies higher than required to meet a target.

Lastly, the effects of uncertainty is also revealed in the difference in abatement costs between

the two types of the model. Abatement costs associated with tax credits can be estimated by

dividing the present value of total costs over time, which include both private investment and

public tax credits, by cumulative emissions reductions with respect to the scenario without a tax
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Figure 3: Renewable Electricity Investment

Figure 4: Renewable Electricity Generation

Figure 5: Electric Vehicle Miles Traveled
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Figure 6: CO2 Emissions

credit (Policy=0 scenario in the current study). In a study that estimated emissions abatement

costs related to IRA tax credits using a dynamic deterministic model, the cost for the power sector

is estimated to be $45-61 per metric ton of CO2 (Bistline et al., 2023)9.

When the abatement costs for electricity sector in Table 1 are compared with the previous

literature, the stochastic model estimates are three to four times higher and the deterministic model

estimates are relatively closer. The first and foremost difference with Bistline et al. (2023) is the

computation. They considered total investment made during ten years of IRA implementation and

estimated the benefits of the expenses for 30 years (10 years of policy implementation plus the

following 20 years). In contrast, in this study, the benefit period coincides with the policy-effective

period that is between 2022 and 2050. When using the same approach adopted in this paper, their

estimate can increase to $140-190, much closer to the stochastic model results. However, it should

be noted that there is model component difference as well.

In general, the stochastic model exhibits higher abatement costs. In the Policy=1 scenario, the

stochastic model result shows 2.5 times higher than the deterministic one. The substantial differ-

ence might be attributable to inefficient investment decisions made under uncertainty. Abatement

cost is determined by the total emissions reduced and the total money spent. These determinants

are related to two critical factors: electricity sector total factor productivity and overnight capital

costs. In the basic model, they are assumed to follow exogenous paths based on the EIA baseline

9Other previous literature estimated a similar range of the abatement costs associated with tax credits: $33-50 per
metric ton (Greenstone et al., 2022) and $35 per metric ton (Stock and Stuart, 2021).
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Table 1: Electricity Sector Average Abatement Costs (between 2022-2050)

Deterministic
(USD / Metric Ton)

Stochastic
(USD / Metric Ton)

Policy=1/3 -3.6226 179.99

Policy=2/3 40.57 179.65

Policy=1 87.392 215.64

projections. Under certainty, the decisions can be optimized in a way that the return on capital

investment is maximized given those exogenous inputs. However, under uncertainty, the invest-

ment decisions are made in a preemptive manner with a bunching or reduced and delayed. Thus,

this ill-timed investment, driven by policy uncertainty, not by economic efficiency, would lead to

increased abatement costs.

4.2 Effects of Policy Persistence

The previous section focuses mainly on the discussion of policy uncertainty as a modeling compo-

nent. This section provides a political economic aspect of modeling uncertainty, as the policy state

transition matrix can change depending on a political economic view. In Section 4.1, the model

is simulated with policy uncertainty characterized with an assumption that the policy regime is to

a certain degree volatile. However, this assumption might be far from realistic. It is argued that

reversing policy can be costly (Thrower, 2018) and there has been growing supporters and coali-

tions supporting the deployment of renewable energy (Zysman and Huberty, 2013). On the other

hand, as new technologies become mature and threaten their incumbents, subsidy policy can face

opposition (Stokes and Breetz, 2018). Prest et al. (2021) attempts to incorporate this political eco-

nomic view in their carbon price analysis. They assume a strongly persistent carbon price. Their

Markov transition matrix of a carbon price is constructed in a way that although it takes a long

time to implement a carbon price, once a high carbon price is achieved, it remains forever.

In this study, I flip their approach to apply it to the study’s “carrot” type of policies. An alter-

native transition matrix implies highly sticky tax credits, although zero tax credits are inevitable in
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Original Transition Specification Persistent Policy Transition Specification

Figure 7: Renewable Electricity Investment Comparison

the long term:

Pt =



1

0.10 0.90

0.10 0.90

0.10 0.90


f or t = electionyears

As shown in Table 7, the results from the original specification are associated with larger vari-

ations across scenarios than those from alternative persistence specification. As the persistence

policy assumption guarantees a high probability of maintaining the current state, the results follow

a similar pattern of those from the deterministic model. Consequently, the distribution of out-

comes is narrower, as found in the deterministic model results. Compared to the stochastic model

results in the previous section, the new specification results show renewable electricity investment

is 28.5% lower, renewable electricity generation in 2050 is 10% lower, and annual CO2 emissions

in 2050 is 2.6% higher for the policy=1 scenario (Figures 7-9).

Similar to the deterministic model results of Table 1, the abatement costs are estimated rela-

21



Original Transition Specification Persistent Policy Transition Specification

Figure 8: Renewable Electricity Generation Comparison

Original Transition Specification Persistent Policy Transition Specification

Figure 9: CO2 Emissions Comparison
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Table 2: Electricity Sector Average Abatement Costs (between 2022-2050)

Original
(USD / Metric Ton)

Persistent Policy
(USD / Metric Ton)

Policy=1/3 179.99 168.62*

Policy=2/3 179.65 179.58

Policy=1 215.64 195.69
*This scenario is not realizable with the persistence specification setting

tively lower for the model with policy stickiness than with policy volatility (Table 2). This might

imply that durable policy can contribute to more efficient allocation of resources, preventing ill-

timed investment bunching or delaying.

4.3 Effects of Timing

This section investigates the impacts of policy implementation timing under uncertainty. Specifi-

cally, four representative sample scenarios are compared. Those scenarios are characterized with

the equal number of policy effective years, but with varied schedules of implementation. The

IRA policy state, Xt = 1, is used as a test policy state except for the first scenario, (1) Constant

2/3, where the policy is consistently Xt =
2
3 . This scenario is presented as a reference to ana-

lyze whether a scenario consistent in providing a lower incentive, Xt =
2
3 , can be as effective as

a frequently-shifting scenario with a higher incentive, Xt = 1. Next, in the (2) Frequent Switch

scenario, the policy state switches between zero and one every election year. (3) Earlier Adoption

and (4) Later Adoption scenarios have the IRA policy state in place for the same number of periods

(i.e. 12 years after 2025) as the (2) Frequent Switch scenario. However, two scenarios are distinct

in terms of when the policy is maintained and abandoned (effective in earlier or later 12 years). All

policy scenarios are plotted in Figure 10.
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Figure 10: Policy Scenario Paths

Figures 11-12 and Tables 3-4 exhibit the results of the four aforementioned scenarios. Scenar-

ios with the policy effective in the later periods (i.e., (2) Frequent Switch and (4) Later Adoption),

in general, are associated with lower annual CO2 emissions and higher accumulated capital in low

emitting technologies around the mid-century. This would be mainly because after an early imple-

mentation of the policy, if it is not maintained until renewables and EV become as competitive as

their conventional counterparts, the early investment depreciates with time and they are replaced

with conventional higher emitting technologies. This trend is found in (3) Earlier Adoption where

natural gas power plant capacity increases, reducing renewable share, in later periods absent of a

policy.

One notable outcome is that the annual CO2 emissions in 2050 and the cumulative CO2 emis-

sions throughout the entire simulation period show only slight difference. Though scenario (2)

Frequent Switch indicates the lowest emissions in 2050, the value is only 2.6% and 3.8% lower

than (1) Constant 2/3 and (3) Earlier Adoption. In a cumulative perspective, (3) Earlier Adoption

exhibits the lowest emissions, but it is only 2.5% and 3.1% lower than (4) Later Adoption and (1)

Constant 2/3. Lastly, despite the small discrepancies, it can be said that meeting the mid-century
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Figure 11: Shares of Renewable Electricity Generation and Electric Vehicle Miles Traveled

Figure 12: Annual CO2 Emissions (2022-2050) and Cumulative CO2 Emissions (2045-2050)

goal, pledged by many governments, including the US’s, may require strict policies focused on

the periods close to the target year as in the scenarios (2) and (4). However, considering the long-

lasting global warming effects of CO2, these results may signal that even with a possibility of it

being abandoned or weakened in the future, a climate policy should start early with the highest

stringency possible to curb climate change as in (2) and (3).

In addition to the relationship between timing and emissions, abatement costs would provide

a perspective on the significance of policy timing. Table 4 shows that (3) Earlier Adoption sce-

nario results in the lowest abatement cost, only 66% of (4) Later Adoption. Another noteworthy

result is that although (2) Frequent Switch scenario might be considered to be effective, with rela-

tively lower annual and cumulative emissions, the scenario’s abatement cost is 30% higher than (3)

Earlier Adoption’s cost. Despite their comparatively smaller variations in annual and cumulative
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Table 3: CO2 Emissions by Scenario

Emissions in 2050
(Million Metric Tons)

Cumulative Emissions
(between 2022-2050)
(Million Metric Tons)

(1) Constant 2/3 1,836.65 60,352

(2) Frequent Switch 1,770.24 59,000

(3) Earlier Adoption 1,815.92 58,675

(4) Later Adoption 1,785.51 60,044

Table 4: Abatement Costs by Scenario

Abatement Costs
(USD / Metric Ton)

(1) Constant 2/3 170.08

(2) Frequent Switch 186.63

(3) Earlier Adoption 144.37

(4) Later Adoption 217.27

emissions, scenarios show meaningful differences in average abatement costs.

The distribution of electricity sector abatement costs from 1,000 simulations (5th-95th per-

centile) is displayed in Figure 13 and also the distribution with respect to annual emissions and

cumulative emissions is plotted in Figure 14. The median value is $173.15 per metric ton of CO2.

The scenarios with abatement costs lower than the median value are located in the upper left part

in Figure 14 and are characterized with lower cumulative emissions and earlier adoption of policy.

The results of annual and cumulative emissions and abatement costs highlight that even when the

environmental impacts of policy scenarios with different implementation schedules are similar, the

schedules are rather critical in determining the efficiency of pathways. It is suggested that earlier

adoption could be more efficient in reducing emissions with lower abatement costs.
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Figure 13: Abatement Costs Distribution from
1,000 simulations (5th-95th percentile) Figure 14: Relationship between Abatement Costs

and Emissions

4.4 Effects of Learning-by-Doing

4.4.1 Interaction with Policy Uncertainty

The basic model used for the analyses above assumes overnight capital costs for power plants and

transportation stock prices follow exogenous trends, implying that cost reductions take place au-

tonomously over the simulation period, regardless of the amount and timing of investment. This

assumption might be to some extent unrealistic and need to be relaxed, especially, for this type of

a study that addresses the impacts of timings of investment and subsidy. Government subsidies for

new low-emitting technologies are often supported on the grounds of learning-by-ding externalities

together with environmental externalities (Van Benthem et al., 2008). Thus, incorporating endoge-

nous technological growth allows a more realistic analysis of government subsidies for renewables

and electric vehicle. To this end, this section examines the simulation results from an extended

model that incorporates learning-by-doing (LBD) effects in capital investment costs, formulated as

in Section 3.1.3 and compares them with those from the basic model simulations.

First, the investment in renewable electricity projected from the LBD model (Figure 16) shows

16-24% higher results than from the basic model without LBD (Figure 15) across four sample

scenarios presented in Section 4.1. This can be partially explained by the characteristics of LBD

effects. In terms of the basic model, the investment timing and volume is mainly driven by the

policy uncertainty and returns on the invested capital. In addition to those factors, in the LBD
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Figure 15: Renewable Investment without LBD Figure 16: Renewable Investment with LBD

Figure 17: Annual CO2 Emissions without LBD Figure 18: Annual CO2 Emissions with LBD

model, the cost-reduction effects of investment lead to relatively sustained and regular investment

throughout the simulation period, rather than few bunching of investment around the policy transi-

tion years as exhibited in the basic model. As a consequence, annual CO2 emissions is 3-4% lower

in 2050 (Figures 17-18). One noteworthy finding is that transition to lower-emitting technology

accelerates later relative to no-LBD model, after capital cost is reduced to a certain degree. This

result is consistent with the implication in Rasmussen (2001) that technological progress induced

by LBD does not necessarily guarantee expedited investment in the near-term and could delay the

abatement efforts.
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4.4.2 Interaction with Policy Timing

This section examines the effects of policy timing using the LBD-incorporated model and compare

the results with those from the basic model. Although two model results show similar patterns, the

model with LBD, in general, shows lower annual emissions, yet higher cumulative emissions com-

pared to the basic model (Table 5). This trend is consistent with the previous section results that

adopting LBD effects in the model leads to even later abatement efforts. However, when costs

are reduced to a degree that returns on capital become higher, investment on abatement technolo-

gies accelerates, thus achieving lower emissions in 2050. When comparing with CO2 emissions

between the LBD stochastic model and the basic deterministic model (the model without incorpo-

rating uncertainty and LBD), the latter might over-project CO2 emissions and underestimate the

impacts of subsidies even more.

Table 5: CO2 Emissions Comparison

Without LBD With LBD

Annual Emissions in 2050 (Million Metric Ton)

(1) Constant 2/3 1,836.6 1,780.5

(2) Frequent Switch 1,770.2 1,717.0

(3) Earlier Adoption 1,815.9 1,784.8

(4) Later Adoption 1,785.5 1,719.3

Cumulative Emissions (Million Metric Ton)

(1) Constant 2/3 60,352 60,407

(2) Frequent Switch 59,000 59,379

(3) Earlier Adoption 58,675 59,151

(4) Later Adoption 60,044 60,443

As the LBD-model is associated with lower annual emissions in later period and higher accu-

mulated emissions throughout the simulation period, its abatement cost estimates are expectedly

higher than the model with LBD, around 1.3-1.7 times. Figure 19 shows the electricity sector

abatement cost distribution from 1,000 simulations (5th-95th percentile). The median abatement
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Figure 19: Abatement Costs Distribution from
1,000 simulations (5th-95th percentile)

Figure 20: Relationship between Abatement Costs
and Emissions

cost is estimated to be $264.52 per metric ton of CO2, which is much higher than $173.15 without

LBD. The difference can be noticeable in the Figure 20 where the abatement costs distribution is

shifted downward and to the right, relative to that from no-LBD model. This is partially driven

by the LBD effects contributing to the delay of abatement investment. The results in this section

reinforce the significance of modeling approach choices in a climate policy analysis.

5 Conclusion

This paper investigates the effects of uncertainty in stringency and schedule of climate policy

implementation using the recently-signed IRA bill as a policy reference. An optimal growth model

incorporating a detailed representation of major CO2-emitting sectors is developed for the US

economy. Policy uncertainty module characterized with four possible policy states and a transition

matrix is added to the model to account for the stochastic nature of the US climate policy. This

non-stationary dynamic stochastic model is solved using the new computational method, SCEQ,

through the mid-century.

First, the analysis about uncertainty effects focuses on investment and outputs from electricity

generation and transportation sector, and abatement costs and CO2 emissions. Stochastic model

results, in general, show a wider range of possible outcomes, underscoring that if an environmental
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policy is uncertain in nature, just as in the US, it may requires a stochastic model to make an

analysis complete. How optimal investment decisions respond to policy uncertainty relies on the

today’s and future expected policy stringency. Compared to their respective deterministic results, a

stringent policy scenario tends to observe an earlier action of investment, expecting lower subsidies

in the future, whereas a scenario with a lenient policy regime experiences delays or reductions in

investment today, waiting for a more generous monetary incentive in the future. Interestingly, the

stochastic model projects lower CO2 emissions for all scenarios, relative to deterministic model.

Lastly, the results suggest that policy uncertainty may increase abatement costs due to inefficient

intertemporal allocation of investment and subsidies.

The second analysis pays attention to a political economic aspect of policy uncertainty. The

result implies that a more durable and certain policy regime may prevent boom-bust cycles and

lead to more efficient use of resources and lower abatement costs. The analysis sheds light on the

role of policy certainty in CO2 emissions mitigation.

Third, the effects of policy implementation timing are also shown to be substantial. A set of

policy scenarios are compared to explain how the differential schedules of equally stringent policy

lead to heterogeneous outcomes. The scenarios with later adoption serve better the purpose of

reducing CO2 emissions in 2050 than the scenario with earlier adoption and later abandonment.

Nevertheless, incentivizing lower-emitting technologies with a policy in earlier periods, though

discontinued later, seems to be more effective in mitigating global warming as the scenario lowers

the cumulative GHG emissions through 2050. At the same time, earlier adoption is efficient as

the abatement costs associated with earlier subsidies are estimated to be lower than that with later

subsidies. The timing of policy implementation under uncertainty is worth to discuss in the context

that the US is the world’s second largest emitter of CO2 and has an influence on other countries in

the globe.

Lastly, the study presents three different models–deterministic model, stochastic model with-

out LBD, and stochastic model with LBD–to demonstrates different specifications of models result

in differential results in investment timing and volumes, CO2 emissions, and abatement costs. The
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comparisons have implications for the choice of model specifications depending on the character-

istics of policy to be examined and the societal context and the technologies of interest.

All results from the basic model are tested with different specification of Markov transition

matrix for a sensitivity analysis. Policy instruments incorporated in the current paper are shown

to be insensitive to specification of transition matrix, but still it would raise a question about how

to better construct a transition matrix in the Markov process to represent policy uncertainty and

address the political environment of the country, which is partially hinted in Section 4.2. The

question has been recently paid attention to by scholars who figured that political feasibility is

only dynamic and evolving over time (Jewell and Cherp, 2020) and climate policy is determined

by socio-politico-technical feedback processes (Moore et al., 2022). Developing a realistic and

dynamic uncertainty module may require a global-scale integrated assessment model and is left

for future research.

The research’s contributions to the literature are threefold. First, it attempts to incorporate

climate policy uncertainty in a dynamic model with multiple sectors. This approach is under-

developed even when it is necessary for the countries politically polarized over environmental

policies, like the US. Second, explicitly modeling the schedule of policy implementation is another

novelty of the study. This approach enables the analysis of comparing a wide range of scenarios

in terms of their economic and environmental outcomes and the efficiency and effectiveness of

climate policies depending on policy adoption timing. Lastly, the research makes a rare attempt to

examine the interaction of climate policy uncertainty and learning-by-doing effects. It underscores

the significance of model specification in a climate policy analysis.

Still, the research requires further improvement. First, to analyze the process of economy-wide

decarbonization, the economic model needs to incorporate the CO2 emissions from all sectors

and their emissions reduction channels. Manufacturing sectors, including steel, aluminum, and

cement, account for over 20% CO2 emissions in the US and thus are a critical part of a climate

policy analysis. Similarly, the analysis of the IRA and potential future legislation is not complete as

the model focuses only on investment tax credit, leaving out other instruments, such as production
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tax credit, for instance, for renewable and clean electricity. By including other climate provisions

of the IRA, the analysis can consider their interactions under uncertainty as well. Another factor

that is critical, but missing in the study is trade. The results might differ if the model includes

trade flows of primary energy, raw materials, vehicles and technologies. In addition, to more

explicitly account for the impacts of tax credits and recycling, it is required to transform the model

into a dynamic general equilibrium model. Lastly, the political uncertainty is characterized using

an ad-hoc probabilities, though tested with a set of different specifications. Despite a perfect

representation of political feasibility being a remotely possible idea, it can improve by considering

relevant factors, such as temperature, trends of natural disasters, and global trade and energy price.
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Appendix

A Model Parameters

Table 6: Baseline Parameters
Parameter Description Units Value

Utility and Population

β Social Discount Factor 0.97172

η Risk Aversion Parameter (and Inverse of
Intertemporal Elasticity of Substitution)

2.25292527

pop0 US Population in 2016 Million People 323.128

Resource Extraction

Stockcoal
0 Coal Estimated Recoverable Reserves Billion Short Tons 254.896

Stockgas
0 Natural Gas Total Technically Recoverable

Resources
Trillion Cubic Feet 2,462

Stockoil
0 Crude Oil Total Technically Recoverable

Resources
Billion Barrels 285

Fcoal
0 Coal Extraction in 2016 Billion Short Tons 0.6786

Fgas
0 Natural Gas Extraction in 2016 Trillion Cubic Feet 27.44422

Foil
0 Crude Oil Extraction in 2016 Billion Barrels 6.275878

γcoal Coal Extraction Cost Function Parameter 2.3554

γgas Natural Gas Extraction Cost Function Parameter 4.7426

γoil Crude Oil Extraction Cost Function Parameter 1.8385

gγ,gas Decline Rate of Natural Gas Extraction Cost 0.082107

gγ,oil Decline Rate of Crude Oil Extraction Cost 0.041873

dγ,gas Growth Rate of Natural Gas Extraction Cost 0.0043258

dγ,oil Decline Rate of Crude Oil Extraction Cost 0.012288

areg Coal Supply Regulation Cost Growth Rate 0.071292

breg Initial Coal Supply Regulation Unit Cost Thousand 2016
USD / Short Ton

0.0014671
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Table 5: Baseline Parameters (continued)
Parameter Description Units Value

Fossil Fuel Electricity Generation

Kcoal
0 Coal Power Plant Net Summer Capacity Terawatts 0.2666199

Kgas
0 Natural Gas Power Plant Net Summer Capacity Terawatts 0.4468232

Fuelcoal
0 Coal Use for Electricity Generation in 2016 Billion Short Tons 0.6786

Fuelgas
0 Natural Gas Use for Electricity Generation in 2016 Trillion Cubic Feet 9.98527

Eleccoal
0 Coal Electricity Generation in 2016 1,000 Terawatt

Hours
1.239149

Elecgas
0 Natural Gas Electricity Generation in 2016 1,000 Terawatt

Hours
1.379271

ωcoal, f uel Share of Coal in Coal Electricity CES Production
Function

0.173646122

ωgas, f uel Share of Natural Gas in Natural Gas Electricity
CES Production Function

0.67946819

ρcoal Elasticity Parameter between Coal and Generation
Capacity Inputs in Coal Electricity CES
Production Function

-
2.466589155

ρgas Elasticity Parameter between Natural Gas and
Generation Capacity Inputs in Natural Gas
Electricity CES Production Function

-
0.326650455

gcoal Growth Rate of TFP for Coal Electricity
Generation

0.003233739

ggas Growth Rate of TFP for Natural Gas Electricity
Generation

0.001002627

dcoal Decline Rate of TFP for Coal Electricity
Generation

0.240699483

dgas Decline Rate of TFP for Natural Gas Electricity
Generation

0.199947368

δ f f Depreciation Rate for Fossil Fuel-fired Electricity
Generation Capacity

0.049780949
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Table 5: Baseline Parameters (continued)
Parameter Description Units Value

Renewable Electricity Generation

Ksolar
0 Coal Power Plant Net Summer Capacity Terawatts 0.032958

Kwind
0 Natural Gas Power Plant Net Summer Capacity Terawatts 0.0812866

Elecsolar
0 Coal Electricity Generation in 2016 1,000 Terawatt

Hours
0.054866

Elecwind
0 Natural Gas Electricity Generation in 2016 1,000 Terawatt

Hours
0.226993

αsolar Output Elasticity of Solar Power Capacity 0.427572491

αwind Output Elasticity of Wind Power Capacity 0.326798148

gsolar Growth Rate of TFP for Solar Electricity
Generation

0.312143141

gwind Growth Rate of TFP for Wind Electricity
Generation

0.208899549

dsolar Decline Rate of TFP for Solar Electricity
Generation

0.173927025

dwind Decline Rate of TFP for Wind Electricity
Generation

0.318891635

δ renew Depreciation Rate for Renewable Electricity
Generation Capacity

0.045841669

Learning-by-Doing Effects

bgas Learning Rate Parameter for Natural Gas Power
Plant Installation

0.252848611

bsolar Learning Rate Parameter for Solar Power Plant
Installation

0.263357537

bwind Learning Rate Parameter for Wind Power Plant
Installation

0.18951335

belectric Learning Rate Parameter for Electric Vehicle
Production

0.10627491

csolar Solar Power Plant Capital Cost Parameter 0.971143565

cwind Wind Power Plant Capital Cost Parameter 0.999480474

celectric Electric Vehicle Production Cost Parameter 0.994104587

cgas Natural Gas Power Plant Capital Cost Parameter 0.998394969
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Table 5: Baseline Parameters (continued)
Parameter Description Units Value

Transportation

KM,gasoline
0 Light-Duty Gasoline Vehicle Stock in 2016 Millions 114.517975

KM,electric
0 Light-Duty Electric Vehicle Stock in 2016 Millions 0.272337

Mgasoline
0 Vehicle Miles Traveled by Light-Duty Gasoline

Vehicles in 2016
Billion Miles 2407.781738

Melectric
0 Vehicle Miles Traveled by Light-Duty Electric

Vehicles in 2016
Billion Miles 4.190919

FuelM,gasoline
0 Gasoline Use for Light-Duty Gasoline Vehicle in

2016
Billion Barrels 3.658204

FuelM,electric
0 Electricity Use for Light-Duty Electric Vehicle in

2016
1,000 Terawatt

Hours
0.007497

ωM,gasoline Gasoline Input Share in Vehicle Miles Traveled
CES Function

0.44117

ωM,electricity Electricity Input Share in Vehicle Miles Traveled
CES Function

0.47583

ρM,gasoline Elasticity Parameter between Gasoline and Vehicle
Stock Inputs in Gasoline Vehicle Miles Traveled
CES Function

-3.455

ρEV Elasticity Parameter between Electricity and
Vehicle Stock Inputs in Electric Vehicle Miles
Traveled CES Function

-2.5393

gM,gasoline Growth Rate of Efficiency for Gasoline Vehicles 0.0033565

gM,EV Growth Rate of Efficiency for Electric Vehicles 0.3078

dM,gasoline Decline Rate of Efficiency for Gasoline Vehicles 0.020734

dM,EV Decline Rate of Efficiency for Electric Vehicles 0.13296

δ M,gasoline Depreciation Rate for Gasoline Vehicles 0.10557

δ M,EV Depreciation Rate for Electric Vehicles 0.07015

αM,gasoline Returns to Scale Parameter in Gasoline Vehicle
Miles Traveled CES Function

0.33647

αM,electric Returns to Scale Parameter in Electric Vehicle
Miles Traveled CES Function

0.40261
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Table 5: Baseline Parameters (continued)
Parameter Description Units Value

Final Goods and Services Sector

KG
0 Capital Stock in 2016 Trillion 2016 USD 64.65

Y G
0 Gross Domestic Product in 2016 Trillion 2016 USD 18.6951

MG
0 Vehicle Miles Traveled in 2016 Billion Miles 2425.77

ElecG
0 Electricity Consumption in 2016 1,000 Terawatt

Hours
4.155

Foil,G
0 Petroleum Product Used for Production (Excluding

Transportation)
Billion Barrels 2.618

Fgas,G
0 Natural Gas Used for Production (Excluding

Electricity Generation)
Trillion Cubic Feet 17.459

ωk Capital Input Share in CES Production Function 0.90772

ωelec Electricity Input Share in CES Production
Function

0.49549

ωm Transportation Input Share in CES Production
Function

0.21424

ωoil Oil Input Share in CES Production Function 0.40622

ωL Labor Input Share in CES Production Function 0.22286

ρkem Elasticity Parameter between Transportation and
Capital-Energy Composite Inputs in CES
Production Function

-0.26656

ρke Elasticity Parameter between Capital and Energy
Inputs in CES Production Function

0.28649

ρen Elasticity Parameter between Electricity and
Primary Energy Composite Inputs in CES
Production Function

-2.138

gG Growth Rate of TFP for Production 0.0096

dG Decline Rate of TFP for Production 0.0059

δ G Depreciation Rate for Capital Stock 0.10266

ρ pe Elasticity Parameter between Petroleum and
Natural Gas Inputs in CES Production Function

-3.7655

ρG Elasticity Parameter between Labor and
Capital-Energy-Transportation Composite Inputs
in CES Production Function

-0.0054
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B Calibration: Model without Learning-by-Doing

All model parameters are calibrated such that the sum of L2 norms between the model outcomes

and corresponding BEA and EIA 2016-2021 reference data and EIA projection after 2021 is min-

imized. The outcomes to be examined include electricity generation and capacity, vehicle stocks

and miles traveled, and GDP growth.

Figure 21: Electricity Generation Calibration
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Figure 22: Electricity Generation Capacity Calibration

Figure 23: Vehicle Miles Traveled Calibration

Figure 24: Vehicle Stock Calibration

EIA AEO 2022 Reference scenario assume the GDP growth rate equals 2.2%.
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Figure 25: GDP Growth Rate

Figure 26 compares sectoral and aggregate CO2 emissions drawn from the calibrated model

and EIA reference projection.

Figure 26: CO2 Emissions for Baseline
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C Calibration: Model with Learning-by-Doing

The extended model with learning-by-doing effects is based on the main model without learning-

by-doing. Calibration performs with respect to overnight capital costs of natural gas, wind, and

solar power plants and electric vehicle prices. Coal power plant capital cost and gasoline vehicle

price assume to follow the EIA baseline projection.

Figure 27: Capital Investment Cost Calibration
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Figure 28: Electricity Generation Calibration

Figure 29: Electricity Generation Capacity Calibration
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Figure 30: Vehicle Miles Traveled Calibration

Figure 31: Vehicle Stock Calibration

EIA AEO 2022 Reference scenario assume the GDP growth rate equals 2.2%.

Figure 32: GDP Growth Rate

Figure 33 compares sectoral and aggregate CO2 emissions drawn from the calibrated model

and EIA reference projection.
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Figure 33: CO2 Emissions for Baseline
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D Model Description

D.1 Planner’s Problem

The social planner maximizes the expected social welfare,

max E

{
T−1

∑
t=0

β
t (Ct/Popt)

1−η

1−η
Popt

}
(3)

, subject to the budget constraint,

Y G
t =Ct + IG

t + ∑
s∈ELEC

Is
t + ∑

s∈T RANS
Is
t + ∑

s∈FF
Zs

t (4)

, where G represents the final goods and services sector, Is is sectoral investment, Z is the extraction

cost of fossil fuels, FF = {coal, crudeoil, and natural gas}, ELEC = {coal, natural gas, solar, and wind},

ELEC.FF = {coal, natural gas}, and T RANS = {gasoline, electricity}.

D.2 Resource (Fuel) Extraction

The cost of extraction for s ∈ FUEL increases as the stock decreases, expressed as

Zs
t = As

t

(
Fs

t
Stocks

t

)γs

(5)

where As
t represent technological advancement in extraction.

The resource stock transition follows

Stocks
t+1 = Stocks

t −Fs
t (6)

D.3 Fossil Fuel Electricity Generation

A fossil fuel electricity production function for s ∈ ELEC.FF is a CES function of fuel and capac-

ity,
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Elecs
t

Elecs
0
= As

t

[
ω

s, f uel
(

Fuels
t

Fuels
0

)ρs

+
(

1−ω
s, f uel

)(Ks
t

Ks
0

)ρs] 1
ρs

(7)

.The capacity transition follows

Ks
t+1 =

(
1−δ

f f
)

Ks
t +

Is
t

ps
t

(8)

, where Ks
t indicates the power generation capacity in TW unit and ps

t represents the overnight

capital cost of plant installation (per TW) for sector s. The EIA provides the projection (reference

scenario) until 2050, and after 2050 the cost is extrapolated.

D.4 Renewable Electricity Generation

The renewable electricity generation (s = solar, wind) takes a single input, generation capacity,

and the rest is assumed to be implicitly reflected in the productivity parameter, As
t ,

Y s
t

Y s
0
= As

t

(
Ks

t
Ks

0

)αs,k

(9)

and the capacity transition follows

Ks
t+1 =

(
1−δ

n f
)

Ks
t +

Is
t

(1− τrenew
t (Xt)) ps

t
(10)

. τrenew
t is the investment tax credits for solar and wind power plants and is a function of the policy

state, Xt . Since the focus of the research lies in coal, natural gas, solar and wind electricity, and a

large portion of the rest electricity generating capacity, including hydroelectric power generation

and conventional nuclear power generation, is hard to change, I assume that the aggregate of the

rest electricity generation does not change over time.
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D.5 Transportation

The transportation sector considers only light-duty gasoline cars and trucks and light-duty electric

cars (s = gasoline, electric). The vehicle miles traveled, Ms
t , is a CES function of fuels, gasoline

or electricity, and vehicle stocks:

Ms
t = As

t

ω
M,s
(

FuelM
t

FuelM
0

)ρs

+
(
1−ω

M,s)(KM,s
t

KM,s
0

)ρsαs
ρs

(11)

and the car stock evolves following

KM,gasoline
t+1 =

(
1−δ

M)KM,gasoline
t +

IM,gasoline
t

pM,gasoline
t

(12)

and

KM,electric
t+1 =

(
1−δ

M)KM,electric
t +

IM,electric
t(

pM,electricity
t − τelectric

t (Xt)
) (13)

where pM,s
t is projected car sales price. Medium- and heavy-duty trucks are not included in the

transportation and considered to be aggregated into general capital stock as they are used mainly

for industrial sectors. Other light-duty vehicles, including hybrid and diesel, are ignored as the

major substitution between electric and gasoline cars is the main focus of the study. τelectric
t (Xt)

represents the tax credit for a electric vehicle purchase given the realized policy state Xt .

D.6 Final Goods and Services

The final good production function is constructed with a Cobb-Douglas function and nested CES

functions:

Yt

Y0 t
= AG

t

[
ω

L
(

Lt

L0

)ρG

+
(
1−ω

L)(QKEM
t

)ρG
] 1

ρG

(14)
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where

QKEM
t =

ω
m
(

MG
t

MG
0

)ρkem

+(1−ω
m)
(
QKE

t
)ρkem


1

ρkem

(15)

,

QKE
t =

ω
k
(

KG
t

KG
0

)ρke

+
(

1−ω
k
)(

QEN
t
)ρke


1

ρke

(16)

,

QEN
t =

ω
elec
(

ElecG
t

ElecG
0

)ρen

+
(

1−ω
elec
)(

QPE
t
)ρen

 1
ρen

(17)

, and

QPE
t =

ω
oil

(
Foil,G

t

Foil,G
0

)ρ pe

+
(

1−ω
oil
)(Fgas,G

t

Fgas,G
0

)ρ pe
1

ρ pe

(18)

The capital stock’s law of motion follows

KG
t+1 =

(
1−δ

G
)

KG
t + IG

t (19)

D.7 Market Clearing

Fcoal
t = Fuelcoal

0 (20)

Fgas
t = Fuelgas

0 +Fgas,G
0 (21)

Foil
t = FuelM,gasoline

0 +Foil,G
0 (22)
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Ecoal
t +Egas

t +Esolar
t +Ewind

t +Eother = EG
t +FuelM,electric

t (23)

D.8 Others

Coal supply regulation cost is assumed to grow as

regulation-costt = bregeareg(t−1) (24)

TFP for each sector, s, is formulated as

As
t = e

gs
ds (1−e−d(t−1)) (25)
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E Sensitivity Analysis

This section tests simulations with different Markov probability distribution. It provides a sensi-

tivity analysis and shows how robust the results are to different specification of Markov transition,

shown in Table 7.

Each column of transition probability corresponds to each column of plots in subsections E.1

and E.2.

(1) (2) (3)

Pt =

 0.2 0.5 0.3
0.35 0.2 0.35 0.1
0.1 0.35 0.2 0.35

0.3 0.5 0.2

 Pt =

 0.6 0.3 0.1
0.15 0.6 0.15 0.1
0.1 0.15 0.6 0.15

0.1 0.3 0.6

 Pt =

 0.25 0.25 0.25 0.25
0.25 0.25 0.25 0.25
0.25 0.25 0.25 0.25
0.25 0.25 0.25 0.25


Table 7: Three Types of Transition Probability

E.1 Effects of Uncertainty

(1) (2) (3)

Figure 34: Renewable Electricity Investment

(1) (2) (3)

Figure 35: Renewable Electricity Generation
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(1) (2) (3)

Figure 36: Electric Vehicle Miles Traveled

(1) (2) (3)

Figure 37: CO2 Emissions

E.2 Effects of Timing

(1) (2) (3)

Figure 38: Share of Renewable Electricity Generation
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(1) (2) (3)

Figure 39: Share of Electric Vehicle Miles Traveled

(1) (2) (3)

Figure 40: Annual CO2 Emissions

(1) (2) (3)

Figure 41: Cumulative CO2 Emissions
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