If there is market failure, government will have to intervene in order to correct the externality.

There are several possible *policy instruments* that can be used:

- taxes on output (pollution)
- standards
- subsidies to the polluter

The three policies can be compared in terms of their effects on pollution and social welfare.
Suppose the government decides to utilize a tax to deal with the steel firm’s pollution, what rate of tax will result in the socially optimal level of pollution x^*?

The optimal rate of tax will be one that is equal to the fishery’s marginal pollution cost MPC_f at the socially efficient level of pollution, assuming a fixed relationship between output and pollution.

The per unit output (pollution) tax, which is often called a *Pigouvian tax*, has two effects:

- It shifts up the steel firm’s marginal production cost curve MC_S by the amount of the tax to where marginal social costs MSC_S just cut marginal revenue MR_S (see panel (a) of Figure 1)

- The marginal abatement cost curve MAC_S shifts inwards to cut the axis at x^* (see panel (b) of Figure 1)
Figure 1: Taxes

Revenue/Cost

MSC$_{S}$

MC$_{S} +$ Tax

MC$_{S}$

MR$_{S}$

Steel (Pollution)

P$_{S}$

Tax

MAC$_{S}$

MPC$_{r}$

MAC$_{S}$ - Tax

Steel (Pollution)

Rate of Tax

MAC$_{S}$

MPC$_{r}$

MAC$_{S}$

MAC$_{S}$ - Tax

Figure 1: Taxes
Standards and Subsidies

- Instead of imposing a tax, the government could set a standard, i.e. it legislates that the steel firm can only pollute up to point x^*

- Alternatively, the government could choose to pay the steel firm a per unit subsidy for every unit of pollution it cuts below x, i.e. subsidy should be set at the same level as the per unit tax, ab in panel (b) Figure 1

- Steel firm will cut back output to x^*, as it receives compensation for its lost profit; below x^*, the subsidy is insufficient to cover its lost profit

- All three policies will have the same effect - they result in the socially optimal amount of pollution x^* - however, the three policies do not have the same effect on social welfare see Figure 2
Figure 2: Taxes vs. Standards vs. Subsidies

MAC_s, MPC_f

MAC_s - Tax

Steel (Pollution)
Social Welfare Effects of Policies

- If tax rate charged is cd:

 - tax revenue is \((abcd)\)

 - pollution cost is \((acd)\), which can be compensated for from tax revenue

 - even with compensation, tax raises excess revenue \((abc)\)

 - polluter bears abatement cost \((cdf)\) as well as paying tax

- If standard is set at \(x^*\):

 - polluter bears abatement cost \((cdf)\), but not pollution cost \((acd)\)

- If polluter receives subsidy at rate cd:

 - polluter does not bear abatement cost \((cdf)\), nor pollution cost \((acd)\), and receives excess compensation of \((cef)\)
Summary of Policies

- All three policies result in the socially optimal level of pollution

- The tax *overcharges* the polluter, however, the surplus revenue could be used to finance research into pollution abatement technology

- The standard fails to make the polluter pay for the pollution cost up to the optimal level, i.e. it violates the *polluter pays principle*

- The subsidy not only fails to make the polluter pay for the pollution cost, but it also over-compensates the polluter for abatement - *also*, taxes have to be levied to pay for the subsidy

- Once there is uncertainty about pollution and abatement costs, it will be difficult to achieve socially optimal level of pollution with any of these policies