Biotechnology and Competing in Capabilities*

* As part of project: "Globalization, Changing Market Structure and the Biotechnology Sector"

Ian Sheldon and Benjamin Anderson The Ohio State University

July 25, 2009

Motivation

- Empirical Motivation
- Theoretical Explanations
 - Product Life-Cycle Theory
 - Transactions Cost Economies
 - Competency (Capability) Theory
 - Strategic Interaction Motives

Competing in Capabilities

- Relevant Stylized Facts
 - i. Endogenous sunk costs (R&D expenditure)
 - ii. Complementary technologies
 - iii. Strengthening of property rights
- Sutton's (1998, 2007) "Bounds" Model
 - Vertical product differentiation (quality/"capability")
 - Escalation of sunk R&D expenditure (innovation)
 - Lower bound on convergence (concentration)

Licensing, Market Structure, and Innovation

- Incorporate ability of firms to license technological capabilities to competitors
- Two mechanisms by which firms can improve their competence along a research trajectory:
 - i. R&D expenditure
 - ii. Licensing
- Lower levels of industry concentration compared to Sutton's "capability" model
 - Feasible under well-defined property rights
 - Changes the incentives of firms to innovate

Graphical Illustration

Equilibrium Configurations

- Sutton's conditions:
 - (i) Stability Condition("Arbitrage Principle")

$$F_0 \hat{v}^{\beta} \ge \frac{1}{k^{\beta}} S\pi(k\hat{u}|\mathbf{u})$$

(ii) Viability Condition("Survivor Principle")

$$S\pi(\hat{u}|\mathbf{u}) \geq F_0\hat{v}^\beta$$

$$\Rightarrow S\pi(\hat{u}|\mathbf{u}) \ge \frac{1}{k^{\beta}} S\pi(k\hat{u}|\mathbf{u}) \quad \forall k$$

- Licensing conditions:
 - (iii) Stability Condition

$$F_0 \hat{v}^{\beta} \ge \frac{1}{k^{\beta}} S\pi(k\hat{u}|\dot{\mathbf{u}}) + \frac{1}{k^{\beta}} Z(k\hat{v})$$

(iv) Viability Condition

$$S\pi(\hat{u}|\dot{\mathbf{u}}) + Z(\hat{v}) \geq F_0 \hat{v}^{\beta}$$

$$\rightarrow S\pi(\hat{u}|\dot{\mathbf{u}}) \ge \frac{1}{k^{\beta}}S\pi(k\hat{u}|\dot{\mathbf{u}}) + \frac{1-k^{\beta}}{k^{\beta}}Z(\hat{v}) \quad \forall k$$

Future Plans

- Formalize "capabilities" model with licensing
- Numerical simulation for both "capabilities" models for agricultural biotechnology (data)
- Use simulation results to predict industry structure and level of innovation following:
 - The introduction of next generation GM crops
 - An exogenous increase in market size associated with increased international trade in biotechnology
 - Exogenous changes regulatory and intellectual property regimes