Endogenous R&D Investment and Market Structure:
A Case Study of the Agricultural Biotechnology Sector

Benjamin C. Anderson†
Ian M. Sheldon

† Contact Information: anderson.1423@osu.edu
This project was supported by the AFRI of the NIFA at the USDA. Grant # 2008-35400-18704.
Motivation

• Why agricultural biotechnology?
 – Young (dynamic) industry
 – Property rights
 – Increasing importance in global agriculture

• Why an endogenous fixed cost (EFC) model?
 – Product quality and sunk investments in R&D
 – Levels of industry concentration bounded away from perfect competition
Research Questions

• Is the agricultural biotechnology industry, specifically the GM corn seed industry, characterized by an EFC-type model?

• How is this analysis relevant to:
 – Past consolidation activity
 – Current discussions on anticompetitive actions
 – Implications on future sector growth
The Agricultural Biotechnology Sector

• The seed industry before biotechnology
 – Innovation, IPRs, and patenting
 – Mendelian genetics and hybridization

• Consolidation and concentration: the first generation of commercialized GM crops

• Subsequent generations and renewed concerns of concentration
Data

• R&D Concentration
 – APHIS Field Trial Data on applications (6697) for the release of GM crops (1990-2010)
 – Dates, phenotypes/genotypes, states
 – Petitions for deregulation (heterogeneity)

• Market Size
 – NASS Acreage Reports (1996-2010)
Market Definition

• Share of total corn acres planted
• Share of corn acres planted to total cropland
• Herbicide Use
 – % of corn acres treated
 – Intensity of application (lb/acre)
• Pesticide Use
 – % of corn acres treated
 – Intensity of application (lb/acre)
Market Definition

Figure 3: Core and Fringe Regions of the US Corn Belt
(Regional Share of Total Corn Acres Planted)

Legend

Source: Authors’ calculations from NASS 2010 Acreage Report.
Empirical Model

• Theoretical prediction: \(C_1 \geq \frac{a_0}{k_0} \cdot \beta^* \cdot h \)

• Empirical model: \((\tilde{C}_n/h)_i = \beta_0 + \frac{\beta_1}{\ln(S/F_0)} + \varepsilon_i \),
 – where \(F(\varepsilon) = 1 - \exp\left\{-\left[\frac{\varepsilon-\mu}{\delta}\right]^\varphi\right\}, \quad \varphi, \delta > 0 \).
Concluding Remarks

• Supportive evidence for agricultural biotechnology being characterized by EFC

• Going forward:
 – Refining markets
 – Estimating model accounting for specific product traits
 – Comparison with other GM seed industry markets (soybeans/cotton)