Extending Sutton's "Bounds": A Model of Endogenous Market Structure, Innovation, and Licensing

Benjamin C. Anderson*
Ian M. Sheldon

*Contact author: anderson.1423@.osu.edu

This project was supported by the AFRI of the NIFA at the USDA,Grant # 2008-35400-18704.

Motivation

- Anand and Khanna (2000)
 - Licensing and cross-licensing constitute 20-33% of all strategic alliances in R&D-intensive sectors
- Sutton (1998; 2007)
 - Endogenous fixed cost (EFC) model of market structure and innovation
 - Lower bound to industry concentration and R&Dintensity in industries characterized by qualitydifferentiated products and fixed costs in R&D

Objectives

- Combine and extend two veins of literature:
 - Relationship between market structure and incentives to innovate allowing for strategic alliances
 - Incentives to license technology in a fully endogenous framework
- Secondary contributions:
 - Heterogeneous firms (in R&D costs parameters)
 - Mixed models of vertical (quality) and horizontal (attributes) differentiation
 - Multiproduct competition (to a lesser extent)

Primary Findings

- Lower Bound to Concentration:
 - Given a feasible lump-sum royalty payment, the lower bound to concentration under licensing converges to a strictly greater bound
- Lower Bound to R&D-Intensity:
 - The lower bound to the R&D/sales ratio of the firm offering the market-leading level of quality, is greater than the lower bound to market concentration

Model Setup

• Definitions:

- Industry consisting of K submarkets with quantity x_k and quality u_k
- Each good consists of a set of attributes with associated competencies v_m such that overall quality is given by $u_k = f(v_1, ..., v_m, ..., v_{Mk})$
- The set of qualities that a Firm i produces across products is \mathbf{u}_i such that the set of qualities across all firms in equilibrium is given by a configuration \mathbf{u}

Model Setup

• Fixed (sunk) R&D Costs:

$$F(v_{im}) = F_0 v_{im}^{\beta_i}, \quad \beta_i \ge 2 \ \forall i.$$

• Fixed (sunk) Licensing Costs:

$$T(v_{jm}) = T_0 + P_{im}^j + F((1 - \delta)v_{jm})$$

= $T_0 + \rho(v_{jm})S\sum_{k \in I_m} r_{ik}(\mathbf{u}) + F_0(1 - \delta)^{\beta_i}v_{jm}^{\beta_i}$.

Equilibrium Configurations

- Viability Conditions: "Survivorship Principle"
 - No Licensing: $S\pi(\hat{u}|\mathbf{u}) F^L(\hat{v}) \sum_{i} F^L(v_m) \ge 0.$
 - Licensor: $[1 + L^n \rho(\hat{v}') \gamma_n] S\pi(\hat{u}'|\hat{\mathbf{u}}) F^L(\hat{v}') \sum_{m \neq n} F^L(v_m) \ge 0,$
 - Licensee: $[1 \rho(\hat{v}')\gamma_n]S\pi(\hat{u}'|\hat{\mathbf{u}}) \sum_{m \neq n} F^H(v_m) [1 (1 \delta)^{\beta^H}]F_0\hat{v}'^{\beta^H} T_0 \ge 0$,
- Stability Conditions: "(No) Arbitrage Principle"
 - No Licensing: $S\pi(\kappa \hat{u}|\mathbf{u}) F^L(\kappa \hat{v}) \sum_{m \neq n} F^L(v_m) \leq 0, \quad \forall \kappa > 1.$
 - Licensor: $[1 + L^n \rho(\kappa \hat{v}') \gamma_n] S\pi(\kappa \hat{u}' | \hat{\mathbf{u}}) F^L(\kappa \hat{v}') \sum_{m \neq n} F^L(v_m) \leq 0, \quad \forall \kappa > 1,$
 - Licensee: $[1 + L^n \rho(\kappa \hat{v}') \gamma_n] S\pi(\kappa \hat{u}' | \hat{\mathbf{u}}) \rho(\hat{v}') \gamma_n S\pi(\hat{u}' | \hat{\mathbf{u}}) \sum_{m \neq n} F^H(v_m)$

$$-\kappa^{\beta^{H}} [1 - (1 - \delta)^{\beta^{H}}] F_{0} \hat{v}'^{\beta^{H}} - T_{0} \le 0, \quad \forall \kappa > 1.$$

Equilibrium Configurations

Figure 1: Equilibrium Configurations

Lower Bound to Concentration under Licensing

• Define:
$$\dot{a}(\kappa) \equiv \inf_{\mathbf{\acute{u}}} \frac{\pi(\kappa \hat{u}'|\mathbf{\acute{u}})}{r(\mathbf{\acute{u}})}$$
.

• Royalty payment: $\rho(\hat{v}') \ge \frac{1}{\gamma_n} \left[\frac{\kappa^{\beta^H} - \kappa^{\beta^L}}{\kappa^{\beta^L} L^n + \kappa^{\beta^H} - 1} \right], \forall \kappa \ge 1$,

• Lower Bound to Industry Concentration under Licensing:

$$\frac{\acute{a}(\kappa)}{\kappa^{\beta^{H}}} \cdot \left[\frac{1 + L^{n} \gamma_{n} \rho(\kappa \hat{v}')}{1 - \left(\frac{\kappa^{\beta^{H}} - 1}{\kappa^{\beta^{H}}}\right) \gamma_{n} \rho(\hat{v}')} \right] + \left(\frac{\kappa^{\beta^{H}} - 1}{\kappa^{\beta^{H}}}\right) \left[\frac{\sum_{m \neq n} F^{H}(\overline{v}_{m}) + T_{0}}{\left[1 - \left(\frac{\kappa^{\beta^{H}} - 1}{\kappa^{\beta^{H}}}\right) \gamma_{n} \rho(\hat{v}')\right] Sr(\hat{\mathbf{u}})} \right].$$

Lower Bound to R&D-Intensity under Licensing

• Define:
$$\dot{\alpha} \equiv \sup_{\kappa} \frac{\dot{\alpha}(\kappa)}{\kappa^{\beta^H}} \cdot \left[\frac{1 + L^n \gamma_n \rho(\kappa \hat{v}')}{1 - \left(\frac{\kappa^{\beta^H} - 1}{\kappa^{\beta^H}}\right) \gamma_n \rho(\hat{v}')} \right].$$

• Lower Bound to R&D-Intensity under Licensing:

$$\alpha \kappa^{\beta^H - \beta^L} \left[1 - \left(\frac{\kappa^{\beta^H - 1}}{\kappa^{\beta^H}} \right) \gamma_n \rho(\hat{v}') \right], \forall \kappa > 1.$$

Conclusion

- Analysis of licensing agreements and anticompetitive behavior should distinguish between industry characteristics
- Welfare (consumer) effects are ambiguous
 - Increased concentration: "Bad"
 - Increased R&D-intensity: "Good" (Both higher quality and more differentiated goods)
 - Ambiguous change in total industry R&D

Thanks!

• Contact author information:

Benjamin C. Anderson

PhD Candidate

AEDE, The Ohio State University

Email: anderson.1423@buckeyemail.osu.edu

Website: http://sites.google.com/site/bcanderson